1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
#include <cub/cub.cuh>
#include "caffe2/core/context.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/generate_proposals_op.h"
#include "caffe2/operators/generate_proposals_op_util_boxes.h" // BBOX_XFORM_CLIP_DEFAULT
#include "caffe2/operators/generate_proposals_op_util_nms.h"
#include "caffe2/operators/generate_proposals_op_util_nms_gpu.h"
#include "caffe2/utils/cub_namespace.cuh"
#if defined(USE_ROCM)
#include <cfloat>
#endif
using caffe2::utils::RotatedBox;
namespace caffe2 {
namespace {
__global__ void GeneratePreNMSUprightBoxesKernel(
const int* d_sorted_scores_keys,
const int nboxes_to_generate,
const float* d_bbox_deltas,
const float4* d_anchors,
const int H,
const int W,
const int A,
const float feat_stride,
const float min_size,
const float* d_img_info_vec,
const int num_images,
const float bbox_xform_clip,
const bool legacy_plus_one,
float4* d_out_boxes,
const int prenms_nboxes, // leading dimension of out_boxes
float* d_inout_scores,
char* d_boxes_keep_flags) {
const int K = H * W;
const int KA = K * A;
CUDA_2D_KERNEL_LOOP(ibox, nboxes_to_generate, image_index, num_images) {
// box_conv_index : # of the same box, but indexed in
// the scores from the conv layer, of shape (A,H,W)
// the num_images dimension was already removed
// box_conv_index = a*K + h*W + w
const int box_conv_index = d_sorted_scores_keys[image_index * KA + ibox];
// We want to decompose box_conv_index in (a,h,w)
// such as box_conv_index = a*K + h*W + w
// (avoiding modulos in the process)
int remaining = box_conv_index;
const int dA = K; // stride of A
const int a = remaining / dA;
remaining -= a * dA;
const int dH = W; // stride of H
const int h = remaining / dH;
remaining -= h * dH;
const int w = remaining; // dW = 1
// Loading the anchor a
// float4 is a struct with float x,y,z,w
const float4 anchor = d_anchors[a];
// x1,y1,x2,y2 :coordinates of anchor a, shifted for position (h,w)
const float shift_w = feat_stride * w;
float x1 = shift_w + anchor.x;
float x2 = shift_w + anchor.z;
const float shift_h = feat_stride * h;
float y1 = shift_h + anchor.y;
float y2 = shift_h + anchor.w;
// TODO use fast math when possible
// Deltas for that box
// Deltas of shape (num_images,4*A,K)
// We're going to compute 4 scattered reads
// better than the alternative, ie transposing the complete deltas
// array first
int deltas_idx = image_index * (KA * 4) + a * 4 * K + h * W + w;
const float dx = d_bbox_deltas[deltas_idx];
// Stride of K between each dimension
deltas_idx += K;
const float dy = d_bbox_deltas[deltas_idx];
deltas_idx += K;
float dw = d_bbox_deltas[deltas_idx];
deltas_idx += K;
float dh = d_bbox_deltas[deltas_idx];
// Upper bound on dw,dh
dw = fmin(dw, bbox_xform_clip);
dh = fmin(dh, bbox_xform_clip);
// Applying the deltas
float width = x2 - x1 + float(int(legacy_plus_one));
const float ctr_x = x1 + 0.5f * width;
const float pred_ctr_x = ctr_x + width * dx; // TODO fuse madd
const float pred_w = width * expf(dw);
x1 = pred_ctr_x - 0.5f * pred_w;
x2 = pred_ctr_x + 0.5f * pred_w - float(int(legacy_plus_one));
float height = y2 - y1 + float(int(legacy_plus_one));
const float ctr_y = y1 + 0.5f * height;
const float pred_ctr_y = ctr_y + height * dy;
const float pred_h = height * expf(dh);
y1 = pred_ctr_y - 0.5f * pred_h;
y2 = pred_ctr_y + 0.5f * pred_h - float(int(legacy_plus_one));
// Clipping box to image
const float img_height = d_img_info_vec[3 * image_index + 0];
const float img_width = d_img_info_vec[3 * image_index + 1];
const float min_size_scaled =
min_size * d_img_info_vec[3 * image_index + 2];
x1 = fmax(fmin(x1, img_width - float(int(legacy_plus_one))), 0.0f);
y1 = fmax(fmin(y1, img_height - float(int(legacy_plus_one))), 0.0f);
x2 = fmax(fmin(x2, img_width - float(int(legacy_plus_one))), 0.0f);
y2 = fmax(fmin(y2, img_height - float(int(legacy_plus_one))), 0.0f);
// Filter boxes
// Removing boxes with one dim < min_size
// (center of box is in image, because of previous step)
width = x2 - x1 + float(int(legacy_plus_one)); // may have changed
height = y2 - y1 + float(int(legacy_plus_one));
bool keep_box = fmin(width, height) >= min_size_scaled;
// We are not deleting the box right now even if !keep_box
// we want to keep the relative order of the elements stable
// we'll do it in such a way later
// d_boxes_keep_flags size: (num_images,prenms_nboxes)
// d_out_boxes size: (num_images,prenms_nboxes)
const int out_index = image_index * prenms_nboxes + ibox;
d_boxes_keep_flags[out_index] = keep_box;
d_out_boxes[out_index] = {x1, y1, x2, y2};
// d_inout_scores size: (num_images,KA)
if (!keep_box)
d_inout_scores[image_index * KA + ibox] = FLT_MIN; // for NMS
}
}
__global__ void GeneratePreNMSRotatedBoxesKernel(
const int* d_sorted_scores_keys,
const int nboxes_to_generate,
const float* d_bbox_deltas,
const RotatedBox* d_anchors,
const int H,
const int W,
const int A,
const float feat_stride,
const float min_size,
const float* d_img_info_vec,
const int num_images,
const float bbox_xform_clip,
const bool legacy_plus_one,
const bool angle_bound_on,
const int angle_bound_lo,
const int angle_bound_hi,
const bool clip_angle_thresh,
RotatedBox* d_out_boxes,
const int prenms_nboxes, // leading dimension of out_boxes
float* d_inout_scores,
char* d_boxes_keep_flags) {
constexpr float PI = 3.14159265358979323846;
const int K = H * W;
const int KA = K * A;
CUDA_2D_KERNEL_LOOP(ibox, nboxes_to_generate, image_index, num_images) {
// box_conv_index : # of the same box, but indexed in
// the scores from the conv layer, of shape (A,H,W)
// the num_images dimension was already removed
// box_conv_index = a*K + h*W + w
const int box_conv_index = d_sorted_scores_keys[image_index * KA + ibox];
// We want to decompose box_conv_index in (a,h,w)
// such as box_conv_index = a*K + h*W + w
// (avoiding modulos in the process)
int remaining = box_conv_index;
const int dA = K; // stride of A
const int a = remaining / dA;
remaining -= a * dA;
const int dH = W; // stride of H
const int h = remaining / dH;
remaining -= h * dH;
const int w = remaining; // dW = 1
// Loading the anchor a and applying shifts.
// RotatedBox in [ctr_x, ctr_y, w, h, angle] format.
// Zero shift for width, height and angle.
RotatedBox box = d_anchors[a];
box.x_ctr += feat_stride * w; // x_ctr shifted for w
box.y_ctr += feat_stride * h; // y_ctr shifted for h
// TODO use fast math when possible
// Deltas for that box
// Deltas of shape (num_images,5*A,K)
// We're going to compute 5 scattered reads
// better than the alternative, ie transposing the complete deltas
// array first
int deltas_idx = image_index * (KA * 5) + a * 5 * K + h * W + w;
// Stride of K between each dimension
RotatedBox delta;
delta.x_ctr = d_bbox_deltas[deltas_idx + K * 0];
delta.y_ctr = d_bbox_deltas[deltas_idx + K * 1];
delta.w = d_bbox_deltas[deltas_idx + K * 2];
delta.h = d_bbox_deltas[deltas_idx + K * 3];
delta.a = d_bbox_deltas[deltas_idx + K * 4];
// Upper bound on dw,dh
delta.w = fmin(delta.w, bbox_xform_clip);
delta.h = fmin(delta.h, bbox_xform_clip);
// Convert back to degrees
delta.a *= 180.f / PI;
// Applying the deltas
box.x_ctr += delta.x_ctr * box.w;
box.y_ctr += delta.y_ctr * box.h;
box.w *= expf(delta.w);
box.h *= expf(delta.h);
box.a += delta.a;
if (angle_bound_on) {
// Normalize angle to be within [angle_bound_lo, angle_bound_hi].
// Deltas are guaranteed to be <= period / 2 while computing training
// targets by bbox_transform_inv.
const float period = angle_bound_hi - angle_bound_lo;
// CAFFE_ENFORCE(period > 0 && period % 180 == 0);
if (box.a < angle_bound_lo) {
box.a += period;
} else if (box.a > angle_bound_hi) {
box.a -= period;
}
}
// Clipping box to image.
// Only clip boxes that are almost upright (with a tolerance of
// clip_angle_thresh) for backward compatibility with horizontal boxes.
const float img_height = d_img_info_vec[3 * image_index + 0];
const float img_width = d_img_info_vec[3 * image_index + 1];
const float min_size_scaled =
min_size * d_img_info_vec[3 * image_index + 2];
if (fabs(box.a) <= clip_angle_thresh) {
// Convert from [x_ctr, y_ctr, w, h] to [x1, y1, x2, y2]
float x1 = box.x_ctr - (box.w - float(int(legacy_plus_one))) / 2.f;
float y1 = box.y_ctr - (box.h - float(int(legacy_plus_one))) / 2.f;
float x2 = x1 + box.w - float(int(legacy_plus_one));
float y2 = y1 + box.h - float(int(legacy_plus_one));
// Clip
x1 = fmax(fmin(x1, img_width - float(int(legacy_plus_one))), 0.0f);
y1 = fmax(fmin(y1, img_height - float(int(legacy_plus_one))), 0.0f);
x2 = fmax(fmin(x2, img_width - float(int(legacy_plus_one))), 0.0f);
y2 = fmax(fmin(y2, img_height - float(int(legacy_plus_one))), 0.0f);
// Convert back to [x_ctr, y_ctr, w, h]
box.x_ctr = (x1 + x2) / 2.f;
box.y_ctr = (y1 + y2) / 2.f;
box.w = x2 - x1 + float(int(legacy_plus_one));
box.h = y2 - y1 + float(int(legacy_plus_one));
}
// Filter boxes.
// Removing boxes with one dim < min_size or center outside the image.
bool keep_box = (fmin(box.w, box.h) >= min_size_scaled) &&
(box.x_ctr < img_width) && (box.y_ctr < img_height);
// We are not deleting the box right now even if !keep_box
// we want to keep the relative order of the elements stable
// we'll do it in such a way later
// d_boxes_keep_flags size: (num_images,prenms_nboxes)
// d_out_boxes size: (num_images,prenms_nboxes)
const int out_index = image_index * prenms_nboxes + ibox;
d_boxes_keep_flags[out_index] = keep_box;
d_out_boxes[out_index] = box;
// d_inout_scores size: (num_images,KA)
if (!keep_box) {
d_inout_scores[image_index * KA + ibox] = FLT_MIN; // for NMS
}
}
}
__global__ void WriteUprightBoxesOutput(
const float4* d_image_boxes,
const float* d_image_scores,
const int* d_image_boxes_keep_list,
const int nboxes,
const int image_index,
float* d_image_out_rois,
float* d_image_out_rois_probs) {
CUDA_1D_KERNEL_LOOP(i, nboxes) {
const int ibox = d_image_boxes_keep_list[i];
const float4 box = d_image_boxes[ibox];
const float score = d_image_scores[ibox];
// Scattered memory accesses
// postnms_nboxes is small anyway
d_image_out_rois_probs[i] = score;
const int base_idx = 5 * i;
d_image_out_rois[base_idx + 0] = image_index;
d_image_out_rois[base_idx + 1] = box.x;
d_image_out_rois[base_idx + 2] = box.y;
d_image_out_rois[base_idx + 3] = box.z;
d_image_out_rois[base_idx + 4] = box.w;
}
}
__global__ void WriteRotatedBoxesOutput(
const RotatedBox* d_image_boxes,
const float* d_image_scores,
const int* d_image_boxes_keep_list,
const int nboxes,
const int image_index,
float* d_image_out_rois,
float* d_image_out_rois_probs) {
CUDA_1D_KERNEL_LOOP(i, nboxes) {
const int ibox = d_image_boxes_keep_list[i];
const RotatedBox box = d_image_boxes[ibox];
const float score = d_image_scores[ibox];
// Scattered memory accesses
// postnms_nboxes is small anyway
d_image_out_rois_probs[i] = score;
const int base_idx = 6 * i;
d_image_out_rois[base_idx + 0] = image_index;
d_image_out_rois[base_idx + 1] = box.x_ctr;
d_image_out_rois[base_idx + 2] = box.y_ctr;
d_image_out_rois[base_idx + 3] = box.w;
d_image_out_rois[base_idx + 4] = box.h;
d_image_out_rois[base_idx + 5] = box.a;
}
}
__global__ void InitializeDataKernel(
const int num_images,
const int KA,
int* d_image_offsets,
int* d_boxes_keys_iota) {
CUDA_2D_KERNEL_LOOP(box_idx, KA, img_idx, num_images) {
d_boxes_keys_iota[img_idx * KA + box_idx] = box_idx;
// One 1D line sets the 1D data
if (box_idx == 0) {
d_image_offsets[img_idx] = KA * img_idx;
// One thread sets the last+1 offset
if (img_idx == 0)
d_image_offsets[num_images] = KA * num_images;
}
}
}
} // namespace
template <>
bool GenerateProposalsOp<CUDAContext>::RunOnDevice() {
const auto& scores = Input(0);
const auto& bbox_deltas = Input(1);
const auto& im_info_tensor = Input(2);
const auto& anchors = Input(3);
auto* out_rois = Output(0);
auto* out_rois_probs = Output(1);
CAFFE_ENFORCE_EQ(scores.ndim(), 4, scores.ndim());
CAFFE_ENFORCE(scores.template IsType<float>(), scores.meta().name());
const auto num_images = scores.dim(0);
const auto A = scores.dim(1);
const auto H = scores.dim(2);
const auto W = scores.dim(3);
const auto box_dim = anchors.dim(1);
CAFFE_ENFORCE(box_dim == 4 || box_dim == 5);
const int K = H * W;
const int conv_layer_nboxes = K * A;
// Getting data members ready
// We'll sort the scores
// we want to remember their original indexes,
// ie their indexes in the tensor of shape (num_images,A,K)
// from the conv layer
// each row of d_conv_layer_indexes is at first initialized to 1..A*K
dev_conv_layer_indexes_.Resize(num_images, conv_layer_nboxes);
int* d_conv_layer_indexes =
dev_conv_layer_indexes_.template mutable_data<int>();
// d_image_offset[i] = i*K*A for i from 1 to num_images+1
// Used by the segmented sort to only sort scores within one image
dev_image_offset_.Resize(num_images + 1);
int* d_image_offset = dev_image_offset_.template mutable_data<int>();
// The following calls to CUB primitives do nothing
// (because the first arg is nullptr)
// except setting cub_*_temp_storage_bytes
size_t cub_sort_temp_storage_bytes = 0;
float* flt_ptr = nullptr;
int* int_ptr = nullptr;
cub::DeviceSegmentedRadixSort::SortPairsDescending(
nullptr,
cub_sort_temp_storage_bytes,
flt_ptr,
flt_ptr,
int_ptr,
int_ptr,
num_images * conv_layer_nboxes,
num_images,
int_ptr,
int_ptr,
0,
8 * sizeof(float), // sort all bits
context_.cuda_stream());
// Allocate temporary storage for CUB
dev_cub_sort_buffer_.Resize(cub_sort_temp_storage_bytes);
void* d_cub_sort_temp_storage =
dev_cub_sort_buffer_.template mutable_data<char>();
size_t cub_select_temp_storage_bytes = 0;
char* char_ptr = nullptr;
cub::DeviceSelect::Flagged(
nullptr,
cub_select_temp_storage_bytes,
flt_ptr,
char_ptr,
flt_ptr,
int_ptr,
K * A,
context_.cuda_stream());
// Allocate temporary storage for CUB
dev_cub_select_buffer_.Resize(cub_select_temp_storage_bytes);
void* d_cub_select_temp_storage =
dev_cub_select_buffer_.template mutable_data<char>();
// Initialize :
// - each row of dev_conv_layer_indexes to 1..K*A
// - each d_nboxes to 0
// - d_image_offset[i] = K*A*i for i 1..num_images+1
// 2D grid
InitializeDataKernel<<<
(CAFFE_GET_BLOCKS(A * K), num_images),
CAFFE_CUDA_NUM_THREADS, // blockDim.y == 1
0,
context_.cuda_stream()>>>(
num_images, conv_layer_nboxes, d_image_offset, d_conv_layer_indexes);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Sorting input scores
dev_sorted_conv_layer_indexes_.Resize(num_images, conv_layer_nboxes);
dev_sorted_scores_.Resize(num_images, conv_layer_nboxes);
const float* d_in_scores = scores.data<float>();
int* d_sorted_conv_layer_indexes =
dev_sorted_conv_layer_indexes_.template mutable_data<int>();
float* d_sorted_scores = dev_sorted_scores_.template mutable_data<float>();
;
cub::DeviceSegmentedRadixSort::SortPairsDescending(
d_cub_sort_temp_storage,
cub_sort_temp_storage_bytes,
d_in_scores,
d_sorted_scores,
d_conv_layer_indexes,
d_sorted_conv_layer_indexes,
num_images * conv_layer_nboxes,
num_images,
d_image_offset,
d_image_offset + 1,
0,
8 * sizeof(float), // sort all bits
context_.cuda_stream());
// Keeping only the topN pre_nms
const int nboxes_to_generate = std::min(conv_layer_nboxes, rpn_pre_nms_topN_);
// Generating the boxes associated to the topN pre_nms scores
dev_boxes_.Resize(num_images, box_dim * nboxes_to_generate);
dev_boxes_keep_flags_.Resize(num_images, nboxes_to_generate);
const float* d_bbox_deltas = bbox_deltas.data<float>();
const float* d_anchors = anchors.data<float>();
const float* d_im_info_vec = im_info_tensor.data<float>();
float* d_boxes = dev_boxes_.template mutable_data<float>();
;
char* d_boxes_keep_flags =
dev_boxes_keep_flags_.template mutable_data<char>();
if (box_dim == 4) {
GeneratePreNMSUprightBoxesKernel<<<
(CAFFE_GET_BLOCKS(nboxes_to_generate), num_images),
CAFFE_CUDA_NUM_THREADS, // blockDim.y == 1
0,
context_.cuda_stream()>>>(
d_sorted_conv_layer_indexes,
nboxes_to_generate,
d_bbox_deltas,
reinterpret_cast<const float4*>(d_anchors),
H,
W,
A,
feat_stride_,
rpn_min_size_,
d_im_info_vec,
num_images,
utils::BBOX_XFORM_CLIP_DEFAULT,
legacy_plus_one_,
reinterpret_cast<float4*>(d_boxes),
nboxes_to_generate,
d_sorted_scores,
d_boxes_keep_flags);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
GeneratePreNMSRotatedBoxesKernel<<<
(CAFFE_GET_BLOCKS(nboxes_to_generate), num_images),
CAFFE_CUDA_NUM_THREADS, // blockDim.y == 1
0,
context_.cuda_stream()>>>(
d_sorted_conv_layer_indexes,
nboxes_to_generate,
d_bbox_deltas,
reinterpret_cast<const RotatedBox*>(d_anchors),
H,
W,
A,
feat_stride_,
rpn_min_size_,
d_im_info_vec,
num_images,
utils::BBOX_XFORM_CLIP_DEFAULT,
legacy_plus_one_,
angle_bound_on_,
angle_bound_lo_,
angle_bound_hi_,
clip_angle_thresh_,
reinterpret_cast<RotatedBox*>(d_boxes),
nboxes_to_generate,
d_sorted_scores,
d_boxes_keep_flags);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
const int nboxes_generated = nboxes_to_generate;
dev_image_prenms_boxes_.Resize(box_dim * nboxes_generated);
float* d_image_prenms_boxes =
dev_image_prenms_boxes_.template mutable_data<float>();
dev_image_prenms_scores_.Resize(nboxes_generated);
float* d_image_prenms_scores =
dev_image_prenms_scores_.template mutable_data<float>();
dev_image_boxes_keep_list_.Resize(nboxes_generated);
int* d_image_boxes_keep_list =
dev_image_boxes_keep_list_.template mutable_data<int>();
const int roi_cols = box_dim + 1;
const int max_postnms_nboxes = std::min(nboxes_generated, rpn_post_nms_topN_);
dev_postnms_rois_.Resize(roi_cols * num_images * max_postnms_nboxes);
dev_postnms_rois_probs_.Resize(num_images * max_postnms_nboxes);
float* d_postnms_rois = dev_postnms_rois_.template mutable_data<float>();
float* d_postnms_rois_probs =
dev_postnms_rois_probs_.template mutable_data<float>();
dev_prenms_nboxes_.Resize(num_images);
host_prenms_nboxes_.Resize(num_images);
int* d_prenms_nboxes = dev_prenms_nboxes_.template mutable_data<int>();
int* h_prenms_nboxes = host_prenms_nboxes_.template mutable_data<int>();
int nrois_in_output = 0;
for (int image_index = 0; image_index < num_images; ++image_index) {
// Sub matrices for current image
const float* d_image_boxes =
&d_boxes[image_index * nboxes_generated * box_dim];
const float* d_image_sorted_scores = &d_sorted_scores[image_index * K * A];
char* d_image_boxes_keep_flags =
&d_boxes_keep_flags[image_index * nboxes_generated];
float* d_image_postnms_rois = &d_postnms_rois[roi_cols * nrois_in_output];
float* d_image_postnms_rois_probs = &d_postnms_rois_probs[nrois_in_output];
// Moving valid boxes (ie the ones with d_boxes_keep_flags[ibox] == true)
// to the output tensors
if (box_dim == 4) {
cub::DeviceSelect::Flagged(
d_cub_select_temp_storage,
cub_select_temp_storage_bytes,
reinterpret_cast<const float4*>(d_image_boxes),
d_image_boxes_keep_flags,
reinterpret_cast<float4*>(d_image_prenms_boxes),
d_prenms_nboxes,
nboxes_generated,
context_.cuda_stream());
} else {
cub::DeviceSelect::Flagged(
d_cub_select_temp_storage,
cub_select_temp_storage_bytes,
reinterpret_cast<const RotatedBox*>(d_image_boxes),
d_image_boxes_keep_flags,
reinterpret_cast<RotatedBox*>(d_image_prenms_boxes),
d_prenms_nboxes,
nboxes_generated,
context_.cuda_stream());
}
cub::DeviceSelect::Flagged(
d_cub_select_temp_storage,
cub_select_temp_storage_bytes,
d_image_sorted_scores,
d_image_boxes_keep_flags,
d_image_prenms_scores,
d_prenms_nboxes,
nboxes_generated,
context_.cuda_stream());
host_prenms_nboxes_.CopyFrom(dev_prenms_nboxes_);
// We know prenms_boxes <= topN_prenms, because nboxes_generated <=
// topN_prenms. Calling NMS on the generated boxes
const int prenms_nboxes = *h_prenms_nboxes;
int nkeep;
utils::nms_gpu(
d_image_prenms_boxes,
prenms_nboxes,
rpn_nms_thresh_,
legacy_plus_one_,
d_image_boxes_keep_list,
&nkeep,
dev_nms_mask_,
host_nms_mask_,
&context_,
box_dim);
// All operations done after previous sort were keeping the relative order
// of the elements the elements are still sorted keep topN <=> truncate the
// array
const int postnms_nboxes = std::min(nkeep, rpn_post_nms_topN_);
// Moving the out boxes to the output tensors,
// adding the image_index dimension on the fly
if (box_dim == 4) {
WriteUprightBoxesOutput<<<
CAFFE_GET_BLOCKS(postnms_nboxes),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
reinterpret_cast<const float4*>(d_image_prenms_boxes),
d_image_prenms_scores,
d_image_boxes_keep_list,
postnms_nboxes,
image_index,
d_image_postnms_rois,
d_image_postnms_rois_probs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
WriteRotatedBoxesOutput<<<
CAFFE_GET_BLOCKS(postnms_nboxes),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
reinterpret_cast<const RotatedBox*>(d_image_prenms_boxes),
d_image_prenms_scores,
d_image_boxes_keep_list,
postnms_nboxes,
image_index,
d_image_postnms_rois,
d_image_postnms_rois_probs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
nrois_in_output += postnms_nboxes;
}
// Using a buffer because we cannot call ShrinkTo
out_rois->Resize(nrois_in_output, roi_cols);
out_rois_probs->Resize(nrois_in_output);
float* d_out_rois = out_rois->template mutable_data<float>();
float* d_out_rois_probs = out_rois_probs->template mutable_data<float>();
CUDA_CHECK(cudaMemcpyAsync(
d_out_rois,
d_postnms_rois,
nrois_in_output * roi_cols * sizeof(float),
cudaMemcpyDeviceToDevice,
context_.cuda_stream()));
CUDA_CHECK(cudaMemcpyAsync(
d_out_rois_probs,
d_postnms_rois_probs,
nrois_in_output * sizeof(float),
cudaMemcpyDeviceToDevice,
context_.cuda_stream()));
return true;
}
REGISTER_CUDA_OPERATOR(GenerateProposals, GenerateProposalsOp<CUDAContext>);
} // namespace caffe2
C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(
GenerateProposals,
caffe2::GenerateProposalsOp<caffe2::CUDAContext>);
|