1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
|
#ifndef CAFFE2_OPERATORS_UTILS_NMS_H_
#define CAFFE2_OPERATORS_UTILS_NMS_H_
#include <vector>
#include "caffe2/core/logging.h"
#include "caffe2/core/macros.h"
#include "caffe2/utils/eigen_utils.h"
#include <c10/util/irange.h>
namespace caffe2 {
namespace utils {
// Greedy non-maximum suppression for proposed bounding boxes
// Reject a bounding box if its region has an intersection-overunion (IoU)
// overlap with a higher scoring selected bounding box larger than a
// threshold.
// Reference: facebookresearch/Detectron/detectron/utils/cython_nms.pyx
// proposals: pixel coordinates of proposed bounding boxes,
// size: (M, 4), format: [x1; y1; x2; y2]
// scores: scores for each bounding box, size: (M, 1)
// sorted_indices: indices that sorts the scores from high to low
// return: row indices of the selected proposals
template <class Derived1, class Derived2>
std::vector<int> nms_cpu_upright(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& sorted_indices,
float thresh,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 4);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
CAFFE_ENFORCE_LE(sorted_indices.size(), proposals.rows());
using EArrX = EArrXt<typename Derived1::Scalar>;
auto x1 = proposals.col(0);
auto y1 = proposals.col(1);
auto x2 = proposals.col(2);
auto y2 = proposals.col(3);
EArrX areas =
(x2 - x1 + int(legacy_plus_one)) * (y2 - y1 + int(legacy_plus_one));
EArrXi order = AsEArrXt(sorted_indices);
std::vector<int> keep;
while (order.size() > 0) {
// exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<size_t>(topN)) {
break;
}
int i = order[0];
keep.push_back(i);
ConstEigenVectorArrayMap<int> rest_indices(
order.data() + 1, order.size() - 1);
EArrX xx1 = GetSubArray(x1, rest_indices).cwiseMax(x1[i]);
EArrX yy1 = GetSubArray(y1, rest_indices).cwiseMax(y1[i]);
EArrX xx2 = GetSubArray(x2, rest_indices).cwiseMin(x2[i]);
EArrX yy2 = GetSubArray(y2, rest_indices).cwiseMin(y2[i]);
EArrX w = (xx2 - xx1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX h = (yy2 - yy1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX inter = w * h;
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// indices for sub array order[1:n]
auto inds = GetArrayIndices(ovr <= thresh);
order = GetSubArray(order, AsEArrXt(inds) + 1);
}
return keep;
}
/**
* Soft-NMS implementation as outlined in https://arxiv.org/abs/1704.04503.
* Reference: facebookresearch/Detectron/detectron/utils/cython_nms.pyx
* out_scores: Output updated scores after applying Soft-NMS
* proposals: pixel coordinates of proposed bounding boxes,
* size: (M, 4), format: [x1; y1; x2; y2]
* size: (M, 5), format: [ctr_x; ctr_y; w; h; angle (degrees)] for RRPN
* scores: scores for each bounding box, size: (M, 1)
* indices: Indices to consider within proposals and scores. Can be used
* to pre-filter proposals/scores based on some threshold.
* sigma: Standard deviation for Gaussian
* overlap_thresh: Similar to original NMS
* score_thresh: If updated score falls below this thresh, discard proposal
* method: 0 - Hard (original) NMS, 1 - Linear, 2 - Gaussian
* return: row indices of the selected proposals
*/
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu_upright(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& indices,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 4);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
using EArrX = EArrXt<typename Derived1::Scalar>;
const auto& x1 = proposals.col(0);
const auto& y1 = proposals.col(1);
const auto& x2 = proposals.col(2);
const auto& y2 = proposals.col(3);
EArrX areas =
(x2 - x1 + int(legacy_plus_one)) * (y2 - y1 + int(legacy_plus_one));
// Initialize out_scores with original scores. Will be iteratively updated
// as Soft-NMS is applied.
*out_scores = scores;
std::vector<int> keep;
EArrXi pending = AsEArrXt(indices);
while (pending.size() > 0) {
// Exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<unsigned>(topN)) {
break;
}
// Find proposal with max score among remaining proposals
int max_pos;
GetSubArray(*out_scores, pending).maxCoeff(&max_pos);
int i = pending[max_pos];
keep.push_back(i);
// Compute IoU of the remaining boxes with the identified max box
std::swap(pending(0), pending(max_pos));
const auto& rest_indices = pending.tail(pending.size() - 1);
EArrX xx1 = GetSubArray(x1, rest_indices).cwiseMax(x1[i]);
EArrX yy1 = GetSubArray(y1, rest_indices).cwiseMax(y1[i]);
EArrX xx2 = GetSubArray(x2, rest_indices).cwiseMin(x2[i]);
EArrX yy2 = GetSubArray(y2, rest_indices).cwiseMin(y2[i]);
EArrX w = (xx2 - xx1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX h = (yy2 - yy1 + int(legacy_plus_one)).cwiseMax(0.0);
EArrX inter = w * h;
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// Update scores based on computed IoU, overlap threshold and NMS method
for (const auto j : c10::irange(rest_indices.size())) {
typename Derived2::Scalar weight;
switch (method) {
case 1: // Linear
weight = (ovr(j) > overlap_thresh) ? (1.0 - ovr(j)) : 1.0;
break;
case 2: // Gaussian
weight = std::exp(-1.0 * ovr(j) * ovr(j) / sigma);
break;
default: // Original NMS
weight = (ovr(j) > overlap_thresh) ? 0.0 : 1.0;
}
(*out_scores)(rest_indices[j]) *= weight;
}
// Discard boxes with new scores below min threshold and update pending
// indices
const auto& rest_scores = GetSubArray(*out_scores, rest_indices);
const auto& inds = GetArrayIndices(rest_scores >= score_thresh);
pending = GetSubArray(rest_indices, AsEArrXt(inds));
}
return keep;
}
namespace {
const int INTERSECT_NONE = 0;
const int INTERSECT_PARTIAL = 1;
const int INTERSECT_FULL = 2;
class RotatedRect {
public:
RotatedRect() {}
RotatedRect(
const Eigen::Vector2f& p_center,
const Eigen::Vector2f& p_size,
float p_angle)
: center(p_center), size(p_size), angle(p_angle) {}
void get_vertices(Eigen::Vector2f* pt) const {
// M_PI / 180. == 0.01745329251
double _angle = angle * 0.01745329251;
float b = (float)cos(_angle) * 0.5f;
float a = (float)sin(_angle) * 0.5f;
pt[0].x() = center.x() - a * size.y() - b * size.x();
pt[0].y() = center.y() + b * size.y() - a * size.x();
pt[1].x() = center.x() + a * size.y() - b * size.x();
pt[1].y() = center.y() - b * size.y() - a * size.x();
pt[2] = 2 * center - pt[0];
pt[3] = 2 * center - pt[1];
}
Eigen::Vector2f center;
Eigen::Vector2f size;
float angle;
};
template <class Derived>
RotatedRect bbox_to_rotated_rect(const Eigen::ArrayBase<Derived>& box) {
CAFFE_ENFORCE_EQ(box.size(), 5);
// cv::RotatedRect takes angle to mean clockwise rotation, but RRPN bbox
// representation means counter-clockwise rotation.
return RotatedRect(
Eigen::Vector2f(box[0], box[1]),
Eigen::Vector2f(box[2], box[3]),
-box[4]);
}
// Eigen doesn't seem to support 2d cross product, so we make one here
float cross_2d(const Eigen::Vector2f& A, const Eigen::Vector2f& B) {
return A.x() * B.y() - B.x() * A.y();
}
// rotated_rect_intersection_pts is a replacement function for
// cv::rotatedRectangleIntersection, which has a bug due to float underflow
// For anyone interested, here're the PRs on OpenCV:
// https://github.com/opencv/opencv/issues/12221
// https://github.com/opencv/opencv/pull/12222
// Note that we do not check if the number of intersections is <= 8 in this case
int rotated_rect_intersection_pts(
const RotatedRect& rect1,
const RotatedRect& rect2,
Eigen::Vector2f* intersections,
int& num) {
// Used to test if two points are the same
const float samePointEps = 0.00001f;
const float EPS = 1e-14;
num = 0; // number of intersections
Eigen::Vector2f vec1[4], vec2[4], pts1[4], pts2[4];
rect1.get_vertices(pts1);
rect2.get_vertices(pts2);
// Specical case of rect1 == rect2
bool same = true;
for (const auto i : c10::irange(4)) {
if (fabs(pts1[i].x() - pts2[i].x()) > samePointEps ||
(fabs(pts1[i].y() - pts2[i].y()) > samePointEps)) {
same = false;
break;
}
}
if (same) {
for (const auto i : c10::irange(4)) {
intersections[i] = pts1[i];
}
num = 4;
return INTERSECT_FULL;
}
// Line vector
// A line from p1 to p2 is: p1 + (p2-p1)*t, t=[0,1]
for (const auto i : c10::irange(4)) {
vec1[i] = pts1[(i + 1) % 4] - pts1[i];
vec2[i] = pts2[(i + 1) % 4] - pts2[i];
}
// Line test - test all line combos for intersection
for (const auto i : c10::irange(4)) {
for (const auto j : c10::irange(4)) {
// Solve for 2x2 Ax=b
// This takes care of parallel lines
float det = cross_2d(vec2[j], vec1[i]);
if (std::fabs(det) <= EPS) {
continue;
}
auto vec12 = pts2[j] - pts1[i];
float t1 = cross_2d(vec2[j], vec12) / det;
float t2 = cross_2d(vec1[i], vec12) / det;
if (t1 >= 0.0f && t1 <= 1.0f && t2 >= 0.0f && t2 <= 1.0f) {
intersections[num++] = pts1[i] + t1 * vec1[i];
}
}
}
// Check for vertices from rect1 inside rect2
{
const auto& AB = vec2[0];
const auto& DA = vec2[3];
auto ABdotAB = AB.squaredNorm();
auto ADdotAD = DA.squaredNorm();
for (const auto i : c10::irange(4)) {
// assume ABCD is the rectangle, and P is the point to be judged
// P is inside ABCD iff. P's projection on AB lies within AB
// and P's projection on AD lies within AD
auto AP = pts1[i] - pts2[0];
auto APdotAB = AP.dot(AB);
auto APdotAD = -AP.dot(DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
(APdotAD <= ADdotAD)) {
intersections[num++] = pts1[i];
}
}
}
// Reverse the check - check for vertices from rect2 inside rect1
{
const auto& AB = vec1[0];
const auto& DA = vec1[3];
auto ABdotAB = AB.squaredNorm();
auto ADdotAD = DA.squaredNorm();
for (const auto i : c10::irange(4)) {
auto AP = pts2[i] - pts1[0];
auto APdotAB = AP.dot(AB);
auto APdotAD = -AP.dot(DA);
if ((APdotAB >= 0) && (APdotAD >= 0) && (APdotAB <= ABdotAB) &&
(APdotAD <= ADdotAD)) {
intersections[num++] = pts2[i];
}
}
}
return num ? INTERSECT_PARTIAL : INTERSECT_NONE;
}
// Compute convex hull using Graham scan algorithm
int convex_hull_graham(
const Eigen::Vector2f* p,
const int& num_in,
Eigen::Vector2f* q,
bool shift_to_zero = false) {
CAFFE_ENFORCE(num_in >= 2);
// Step 1:
// Find point with minimum y
// if more than 1 points have the same minimum y,
// pick the one with the mimimum x.
int t = 0;
for (const auto i : c10::irange(1, num_in)) {
if (p[i].y() < p[t].y() || (p[i].y() == p[t].y() && p[i].x() < p[t].x())) {
t = i;
}
}
auto& s = p[t]; // starting point
// Step 2:
// Subtract starting point from every points (for sorting in the next step)
for (const auto i : c10::irange(num_in)) {
q[i] = p[i] - s;
}
// Swap the starting point to position 0
std::swap(q[0], q[t]);
// Step 3:
// Sort point 1 ~ num_in according to their relative cross-product values
// (essentially sorting according to angles)
std::stable_sort(
q + 1,
q + num_in,
[](const Eigen::Vector2f& A, const Eigen::Vector2f& B) -> bool {
float temp = cross_2d(A, B);
if (fabs(temp) < 1e-6) {
return A.squaredNorm() < B.squaredNorm();
} else {
return temp > 0;
}
});
// Step 4:
// Make sure there are at least 2 points (that don't overlap with each other)
// in the stack
int k; // index of the non-overlapped second point
for (k = 1; k < num_in; k++) {
if (q[k].squaredNorm() > 1e-8)
break;
}
if (k == num_in) {
// We reach the end, which means the convex hull is just one point
q[0] = p[t];
return 1;
}
q[1] = q[k];
int m = 2; // 2 elements in the stack
// Step 5:
// Finally we can start the scanning process.
// If we find a non-convex relationship between the 3 points,
// we pop the previous point from the stack until the stack only has two
// points, or the 3-point relationship is convex again
for (int i = k + 1; i < num_in; i++) {
while (m > 1 && cross_2d(q[i] - q[m - 2], q[m - 1] - q[m - 2]) >= 0) {
m--;
}
q[m++] = q[i];
}
// Step 6 (Optional):
// In general sense we need the original coordinates, so we
// need to shift the points back (reverting Step 2)
// But if we're only interested in getting the area/perimeter of the shape
// We can simply return.
if (!shift_to_zero) {
for (const auto i : c10::irange(m))q[i] += s;
}
return m;
}
double polygon_area(const Eigen::Vector2f* q, const int& m) {
if (m <= 2)
return 0;
double area = 0;
for (int i = 1; i < m - 1; i++)
area += fabs(cross_2d(q[i] - q[0], q[i + 1] - q[0]));
return area / 2.0;
}
/**
* Returns the intersection area of two rotated rectangles.
*/
double rotated_rect_intersection(
const RotatedRect& rect1,
const RotatedRect& rect2) {
// There are up to 4 x 4 + 4 + 4 = 24 intersections (including dups) returned
// from rotated_rect_intersection_pts
Eigen::Vector2f intersectPts[24], orderedPts[24];
int num = 0; // number of intersections
// Find points of intersection
// TODO: rotated_rect_intersection_pts is a replacement function for
// cv::rotatedRectangleIntersection, which has a bug due to float underflow
// For anyone interested, here're the PRs on OpenCV:
// https://github.com/opencv/opencv/issues/12221
// https://github.com/opencv/opencv/pull/12222
// Note: it doesn't matter if #intersections is greater than 8 here
auto ret = rotated_rect_intersection_pts(rect1, rect2, intersectPts, num);
if (num > 24) {
// should never happen
string msg = "";
msg += "num_intersections = " + to_string(num);
msg += "; rect1.center = (" + to_string(rect1.center.x()) + ", " +
to_string(rect1.center.y()) + "), ";
msg += "rect1.size = (" + to_string(rect1.size.x()) + ", " +
to_string(rect1.size.y()) + "), ";
msg += "rect1.angle = " + to_string(rect1.angle);
msg += "; rect2.center = (" + to_string(rect2.center.x()) + ", " +
to_string(rect2.center.y()) + "), ";
msg += "rect2.size = (" + to_string(rect2.size.x()) + ", " +
to_string(rect2.size.y()) + "), ";
msg += "rect2.angle = " + to_string(rect2.angle);
CAFFE_ENFORCE(num <= 24, msg);
}
if (num <= 2)
return 0.0;
// If one rectangle is fully enclosed within another, return the area
// of the smaller one early.
if (ret == INTERSECT_FULL) {
return std::min(
rect1.size.x() * rect1.size.y(), rect2.size.x() * rect2.size.y());
}
// Convex Hull to order the intersection points in clockwise or
// counter-clockwise order and find the countour area.
int num_convex = convex_hull_graham(intersectPts, num, orderedPts, true);
return polygon_area(orderedPts, num_convex);
}
} // namespace
/**
* Find the intersection area of two rotated boxes represented in format
* [ctr_x, ctr_y, width, height, angle].
* `angle` represents counter-clockwise rotation in degrees.
*/
template <class Derived1, class Derived2>
double bbox_intersection_rotated(
const Eigen::ArrayBase<Derived1>& box1,
const Eigen::ArrayBase<Derived2>& box2) {
CAFFE_ENFORCE(box1.size() == 5 && box2.size() == 5);
const auto& rect1 = bbox_to_rotated_rect(box1);
const auto& rect2 = bbox_to_rotated_rect(box2);
return rotated_rect_intersection(rect1, rect2);
}
/**
* Similar to `bbox_overlaps()` in detectron/utils/cython_bbox.pyx,
* but handles rotated boxes represented in format
* [ctr_x, ctr_y, width, height, angle].
* `angle` represents counter-clockwise rotation in degrees.
*/
template <class Derived1, class Derived2>
Eigen::ArrayXXf bbox_overlaps_rotated(
const Eigen::ArrayBase<Derived1>& boxes,
const Eigen::ArrayBase<Derived2>& query_boxes) {
CAFFE_ENFORCE(boxes.cols() == 5 && query_boxes.cols() == 5);
const auto& boxes_areas = boxes.col(2) * boxes.col(3);
const auto& query_boxes_areas = query_boxes.col(2) * query_boxes.col(3);
Eigen::ArrayXXf overlaps(boxes.rows(), query_boxes.rows());
for (const auto i : c10::irange(boxes.rows())) {
for (const auto j : c10::irange(query_boxes.rows())) {
auto inter = bbox_intersection_rotated(boxes.row(i), query_boxes.row(j));
overlaps(i, j) = (inter == 0.0)
? 0.0
: inter / (boxes_areas[i] + query_boxes_areas[j] - inter);
}
}
return overlaps;
}
// Similar to nms_cpu_upright, but handles rotated proposal boxes
// in the format:
// size (M, 5), format [ctr_x; ctr_y; width; height; angle (in degrees)].
//
// For now, we only consider IoU as the metric for suppression. No angle info
// is used yet.
template <class Derived1, class Derived2>
std::vector<int> nms_cpu_rotated(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& sorted_indices,
float thresh,
int topN = -1) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 5);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
CAFFE_ENFORCE_LE(sorted_indices.size(), proposals.rows());
using EArrX = EArrXt<typename Derived1::Scalar>;
auto widths = proposals.col(2);
auto heights = proposals.col(3);
EArrX areas = widths * heights;
std::vector<RotatedRect> rotated_rects(proposals.rows());
for (const auto i : c10::irange(proposals.rows())) {
rotated_rects[i] = bbox_to_rotated_rect(proposals.row(i));
}
EArrXi order = AsEArrXt(sorted_indices);
std::vector<int> keep;
while (order.size() > 0) {
// exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<size_t>(topN)) {
break;
}
int i = order[0];
keep.push_back(i);
ConstEigenVectorArrayMap<int> rest_indices(
order.data() + 1, order.size() - 1);
EArrX inter(rest_indices.size());
for (const auto j : c10::irange(rest_indices.size())) {
inter[j] = rotated_rect_intersection(
rotated_rects[i], rotated_rects[rest_indices[j]]);
}
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// indices for sub array order[1:n].
// TODO (viswanath): Should angle info be included as well while filtering?
auto inds = GetArrayIndices(ovr <= thresh);
order = GetSubArray(order, AsEArrXt(inds) + 1);
}
return keep;
}
// Similar to soft_nms_cpu_upright, but handles rotated proposal boxes
// in the format:
// size (M, 5), format [ctr_x; ctr_y; width; height; angle (in degrees)].
//
// For now, we only consider IoU as the metric for suppression. No angle info
// is used yet.
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu_rotated(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& indices,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1) {
CAFFE_ENFORCE_EQ(proposals.rows(), scores.rows());
CAFFE_ENFORCE_EQ(proposals.cols(), 5);
CAFFE_ENFORCE_EQ(scores.cols(), 1);
using EArrX = EArrXt<typename Derived1::Scalar>;
auto widths = proposals.col(2);
auto heights = proposals.col(3);
EArrX areas = widths * heights;
std::vector<RotatedRect> rotated_rects(proposals.rows());
for (const auto i : c10::irange(proposals.rows())) {
rotated_rects[i] = bbox_to_rotated_rect(proposals.row(i));
}
// Initialize out_scores with original scores. Will be iteratively updated
// as Soft-NMS is applied.
*out_scores = scores;
std::vector<int> keep;
EArrXi pending = AsEArrXt(indices);
while (pending.size() > 0) {
// Exit if already enough proposals
if (topN >= 0 && keep.size() >= static_cast<size_t>(topN)) {
break;
}
// Find proposal with max score among remaining proposals
int max_pos;
GetSubArray(*out_scores, pending).maxCoeff(&max_pos);
int i = pending[max_pos];
keep.push_back(i);
// Compute IoU of the remaining boxes with the identified max box
std::swap(pending(0), pending(max_pos));
const auto& rest_indices = pending.tail(pending.size() - 1);
EArrX inter(rest_indices.size());
for (const auto j : c10::irange(rest_indices.size())) {
inter[j] = rotated_rect_intersection(
rotated_rects[i], rotated_rects[rest_indices[j]]);
}
EArrX ovr = inter / (areas[i] + GetSubArray(areas, rest_indices) - inter);
// Update scores based on computed IoU, overlap threshold and NMS method
// TODO (viswanath): Should angle info be included as well while filtering?
for (const auto j : c10::irange(rest_indices.size())) {
typename Derived2::Scalar weight;
switch (method) {
case 1: // Linear
weight = (ovr(j) > overlap_thresh) ? (1.0 - ovr(j)) : 1.0;
break;
case 2: // Gaussian
weight = std::exp(-1.0 * ovr(j) * ovr(j) / sigma);
break;
default: // Original NMS
weight = (ovr(j) > overlap_thresh) ? 0.0 : 1.0;
}
(*out_scores)(rest_indices[j]) *= weight;
}
// Discard boxes with new scores below min threshold and update pending
// indices
const auto& rest_scores = GetSubArray(*out_scores, rest_indices);
const auto& inds = GetArrayIndices(rest_scores >= score_thresh);
pending = GetSubArray(rest_indices, AsEArrXt(inds));
}
return keep;
}
template <class Derived1, class Derived2>
std::vector<int> nms_cpu(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& sorted_indices,
float thresh,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE(proposals.cols() == 4 || proposals.cols() == 5);
if (proposals.cols() == 4) {
// Upright boxes
return nms_cpu_upright(
proposals, scores, sorted_indices, thresh, topN, legacy_plus_one);
} else {
// Rotated boxes with angle info
return nms_cpu_rotated(proposals, scores, sorted_indices, thresh, topN);
}
}
// Greedy non-maximum suppression for proposed bounding boxes
// Reject a bounding box if its region has an intersection-overunion (IoU)
// overlap with a higher scoring selected bounding box larger than a
// threshold.
// Reference: facebookresearch/Detectron/detectron/lib/utils/cython_nms.pyx
// proposals: pixel coordinates of proposed bounding boxes,
// size: (M, 4), format: [x1; y1; x2; y2]
// size: (M, 5), format: [ctr_x; ctr_y; w; h; angle (degrees)] for RRPN
// scores: scores for each bounding box, size: (M, 1)
// return: row indices of the selected proposals
template <class Derived1, class Derived2>
std::vector<int> nms_cpu(
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
float thres,
bool legacy_plus_one = false) {
std::vector<int> indices(proposals.rows());
std::iota(indices.begin(), indices.end(), 0);
std::stable_sort(
indices.data(),
indices.data() + indices.size(),
[&scores](int lhs, int rhs) { return scores(lhs) > scores(rhs); });
return nms_cpu(
proposals,
scores,
indices,
thres,
-1 /* topN */,
legacy_plus_one /* legacy_plus_one */);
}
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
const std::vector<int>& indices,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1,
bool legacy_plus_one = false) {
CAFFE_ENFORCE(proposals.cols() == 4 || proposals.cols() == 5);
if (proposals.cols() == 4) {
// Upright boxes
return soft_nms_cpu_upright(
out_scores,
proposals,
scores,
indices,
sigma,
overlap_thresh,
score_thresh,
method,
topN,
legacy_plus_one);
} else {
// Rotated boxes with angle info
return soft_nms_cpu_rotated(
out_scores,
proposals,
scores,
indices,
sigma,
overlap_thresh,
score_thresh,
method,
topN);
}
}
template <class Derived1, class Derived2, class Derived3>
std::vector<int> soft_nms_cpu(
Eigen::ArrayBase<Derived3>* out_scores,
const Eigen::ArrayBase<Derived1>& proposals,
const Eigen::ArrayBase<Derived2>& scores,
float sigma = 0.5,
float overlap_thresh = 0.3,
float score_thresh = 0.001,
unsigned int method = 1,
int topN = -1,
bool legacy_plus_one = false) {
std::vector<int> indices(proposals.rows());
std::iota(indices.begin(), indices.end(), 0);
return soft_nms_cpu(
out_scores,
proposals,
scores,
indices,
sigma,
overlap_thresh,
score_thresh,
method,
topN,
legacy_plus_one);
}
} // namespace utils
} // namespace caffe2
#endif // CAFFE2_OPERATORS_UTILS_NMS_H_
|