File: given_tensor_fill_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (237 lines) | stat: -rw-r--r-- 8,332 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include "caffe2/operators/given_tensor_fill_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(GivenTensorFill, GivenTensorFillOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
    GivenTensorDoubleFill,
    GivenTensorFillOp<double, CPUContext>);
REGISTER_CPU_OPERATOR(GivenTensorBoolFill, GivenTensorFillOp<bool, CPUContext>);
REGISTER_CPU_OPERATOR(
    GivenTensorInt16Fill,
    GivenTensorFillOp<int16_t, CPUContext>);
REGISTER_CPU_OPERATOR(GivenTensorIntFill, GivenTensorFillOp<int, CPUContext>);
REGISTER_CPU_OPERATOR(
    GivenTensorInt64Fill,
    GivenTensorFillOp<int64_t, CPUContext>);
REGISTER_CPU_OPERATOR(
    GivenTensorStringFill,
    GivenTensorFillOp<std::string, CPUContext>);

NO_GRADIENT(GivenTensorFill);
NO_GRADIENT(GivenTensorDoubleFill);
NO_GRADIENT(GivenTensorBoolFill);
NO_GRADIENT(GivenTensorInt16Fill);
NO_GRADIENT(GivenTensorIntFill);
NO_GRADIENT(GivenTensorInt64Fill);
NO_GRADIENT(GivenTensorStringFill);

OPERATOR_SCHEMA(GivenTensorFill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .SetDoc(R"DOC(
This op fills an output tensor with the data specified by the *value* and *dtype* arguments.  The output tensor shape is specified by the *shape* argument. Beware, when using this argument *value* should have a value for every element of the *output*, as missing values will not be initialized automatically. If *input_as_shape* is set to *true*, then the *input* should be a 1D tensor containing the desired output shape (the dimensions specified in *extra_shape* will also be appended). In this case, the *shape* argument should **not** be set.

*Note: Do not set the shape argument and pass in an input at the same time.*

Github Links:
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/given_tensor_fill_op.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/given_tensor_fill_op.cc

<details>

<summary> <b>Example</b> </summary>

**Code**

```

workspace.ResetWorkspace()

op = core.CreateOperator(
    "GivenTensorFill",
    [],
    ["out"],
    values=[1., 2., 3.],
    shape=[3],
)

workspace.RunOperatorOnce(op)
print("Out:\n", workspace.FetchBlob("out"))

```

**Result**

```

Out:
 [1. 2. 3.]

```

</details>

)DOC")
    .Arg(
        "values",
        "*(type depends on dtype, Required=True)* The value of the elements to go in the *output* tensor.",
        true /* required */)
    .Arg(
        "dtype",
        "The data type for the elements of the output tensor. Strictly must be one of the types from DataType enum in TensorProto.")
    .Arg(
        "shape",
        "*(type: [int])* Desired shape of the *output* tensor.")
    .Arg(
        "extra_shape",
        "*(type: [int])* The additional dimensions appended at the end of the *shape* indicated by the input blob. Cannot set the *extra_shape* argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "*(type: bool; default: False)* set to *True* to use the *input* as shape. First, input must be in CPU context.")
    .Input(
        0,
        "input",
        "(Optional) 1D tensor specifying the shape of the output. Must be used with *input_as_shape=True*")
    .Output(
        0,
        "output",
        "Output tensor with desired dimension filled with specified data. If the shape argument is set, this is the shape specified, and if the *input* exists and *input_as_shape=True*, it is the shape specified by the *input* tensor.")
    .TensorInferenceFunction(FillerTensorInference<>);

OPERATOR_SCHEMA(GivenTensorDoubleFill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .Arg(
        "values",
        "The value for the elements of the output tensor.",
        true /* required */)
    .Arg(
        "shape",
        "The shape of the output tensor."
        "Cannot set the shape argument and pass in an input at the same time.")
    .Arg(
        "extra_shape",
        "The additional dimensions appended at the end of the shape indicated"
        "by the input blob."
        "Cannot set the extra_shape argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "1D tensor containing the desired output shape. First input must be in CPU context.")
    .TensorInferenceFunction(
        FillerTensorInference<TensorProto_DataType_DOUBLE>);

OPERATOR_SCHEMA(GivenTensorBoolFill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .Arg(
        "values",
        "The value for the elements of the output tensor.",
        true /* required */)
    .Arg(
        "shape",
        "The shape of the output tensor."
        "Cannot set the shape argument and pass in an input at the same time.")
    .Arg(
        "extra_shape",
        "The additional dimensions appended at the end of the shape indicated"
        "by the input blob."
        "Cannot set the extra_shape argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "1D tensor containing the desired output shape. First input must be in CPU context.")
    .TensorInferenceFunction(FillerTensorInference<TensorProto_DataType_BOOL>);

OPERATOR_SCHEMA(GivenTensorInt16Fill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .Arg(
        "values",
        "The value for the elements of the output tensor.",
        true /* required */)
    .Arg(
        "shape",
        "The shape of the output tensor."
        "Cannot set the shape argument and pass in an input at the same time.")
    .Arg(
        "extra_shape",
        "The additional dimensions appended at the end of the shape indicated"
        "by the input blob."
        "Cannot set the extra_shape argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "1D tensor containing the desired output shape. First input must be in CPU context.")
    .TensorInferenceFunction(FillerTensorInference<TensorProto_DataType_INT16>);

OPERATOR_SCHEMA(GivenTensorIntFill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .Arg(
        "values",
        "The value for the elements of the output tensor.",
        true /* required */)
    .Arg(
        "shape",
        "The shape of the output tensor."
        "Cannot set the shape argument and pass in an input at the same time.")
    .Arg(
        "extra_shape",
        "The additional dimensions appended at the end of the shape indicated"
        "by the input blob."
        "Cannot set the extra_shape argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "1D tensor containing the desired output shape. First input must be in CPU context.")
    .TensorInferenceFunction(FillerTensorInference<TensorProto_DataType_INT32>);

OPERATOR_SCHEMA(GivenTensorInt64Fill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .Arg(
        "values",
        "The value for the elements of the output tensor.",
        true /* required */)
    .Arg(
        "shape",
        "The shape of the output tensor."
        "Cannot set the shape argument and pass in an input at the same time.")
    .Arg(
        "extra_shape",
        "The additional dimensions appended at the end of the shape indicated"
        "by the input blob."
        "Cannot set the extra_shape argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "1D tensor containing the desired output shape. First input must be in CPU context.")
    .TensorInferenceFunction(FillerTensorInference<TensorProto_DataType_INT64>);

OPERATOR_SCHEMA(GivenTensorStringFill)
    .NumInputs(0, 1)
    .NumOutputs(1)
    .AllowInplace({{0, 0}})
    .Arg(
        "values",
        "The value for the elements of the output tensor.",
        true /* required */)
    .Arg(
        "shape",
        "The shape of the output tensor."
        "Cannot set the shape argument and pass in an input at the same time.")
    .Arg(
        "extra_shape",
        "The additional dimensions appended at the end of the shape indicated"
        "by the input blob."
        "Cannot set the extra_shape argument when there is no input blob.")
    .Arg(
        "input_as_shape",
        "1D tensor containing the desired output shape. First input must be in CPU context.")
    .TensorInferenceFunction(
        FillerTensorInference<TensorProto_DataType_STRING>);

} // namespace caffe2