1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
#ifndef CAFFE2_OPERATORS_H_SOFTMAX_OP_H_
#define CAFFE2_OPERATORS_H_SOFTMAX_OP_H_
#include <c10/util/Optional.h>
#include <c10/util/irange.h>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/proto/hsm.pb.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, typename Context>
class HSoftmaxOpBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit HSoftmaxOpBase(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {
HierarchyProto hierarchy;
CAFFE_ENFORCE(hierarchy.ParseFromString(
this->template GetSingleArgument<string>("hierarchy", "")));
for (const auto& path : hierarchy.paths()) {
hierarchy_all_map_.emplace(path.word_id(), path);
}
}
protected:
std::unordered_map<int, PathProto> hierarchy_all_map_;
c10::optional<Tensor> scale_;
c10::optional<Tensor> sum_multiplier_;
c10::optional<Tensor> bias_multiplier_;
static constexpr T kLOG_THRESHOLD() {
return 1e-20f;
}
static std::unordered_map<int, PathProto> getHierarchyForLabels(
int M,
const int* labels,
const std::unordered_map<int, PathProto>& hierarchy_all_map) {
std::unordered_map<int, PathProto> hierarchy_map;
std::set<int> label_set = std::set<int>(labels, labels + M);
for (const auto& label : label_set) {
auto search = hierarchy_all_map.find(label);
CAFFE_ENFORCE(search != hierarchy_all_map.end(), "incorrect label.");
hierarchy_map.emplace(search->first, search->second);
}
return hierarchy_map;
}
int getIntermediateOutputSize(
const int* labels,
int M,
std::unordered_map<int, PathProto>& hierarchy) const {
int size = 0;
for (const auto label : c10::irange(M)) {
int word_id = labels[label];
const auto& path = hierarchy[word_id];
size += std::accumulate(
path.path_nodes().begin(),
path.path_nodes().end(),
0,
// Output of FC + Output of Softmax
[](int sz, PathNodeProto node) { return sz + 2 * node.length(); });
}
return size;
}
};
template <typename T, class Context>
class HSoftmaxOp : public HSoftmaxOpBase<T, Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
using HSoftmaxOpBase<T, Context>::HSoftmaxOpBase;
bool RunOnDevice() override;
protected:
float RunForwardSingle(
const float* X,
const float* W,
const float* b,
int target,
float* output,
const float* bias_multiplier,
int w_length,
int K,
int& output_offset);
};
template <typename T, class Context>
class HSoftmaxGradientOp final : public HSoftmaxOpBase<T, Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
using HSoftmaxOpBase<T, Context>::HSoftmaxOpBase;
bool RunOnDevice() override;
private:
void RunBackwardSingle(
const float* X,
const float* dY,
const float* W,
int target,
const float* int_output,
float* dX,
float* dW,
float* db,
float* dOutput,
int dim_in,
int w_length,
int& output_offset);
};
template <typename T, class Context>
class HSoftmaxSearchOp final : public HSoftmaxOp<T, Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit HSoftmaxSearchOp(Args&&... args)
: HSoftmaxOp<T, Context>(std::forward<Args>(args)...),
top_n_(this->template GetSingleArgument<int>("topN", 5)),
beam_(this->template GetSingleArgument<float>("beam", 0.01f)) {
CAFFE_ENFORCE(tree_.ParseFromString(
this->template GetSingleArgument<string>("tree", "")));
}
bool RunOnDevice() override;
private:
int top_n_;
float beam_;
TreeProto tree_;
bool pruning(
const float* X,
int sample,
int K,
const float* W,
const float* b,
const NodeProto& src_node,
NodeProto& dst_node,
float parent_score,
float beam);
bool extractNodes(
const NodeProto& node,
std::vector<std::pair<string, float>>& info);
};
template <typename T, class Context>
class HuffmanTreeHierarchyOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit HuffmanTreeHierarchyOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
num_classes_(this->template GetSingleArgument<int>("num_classes", -1)) {
}
bool RunOnDevice() override;
private:
// Internal huffman tree data.
struct Node {
Node(T l, int count)
: label(l), count(count), left_ch_index(-1), right_ch_index(-1) {}
T label;
int count;
int left_ch_index;
int right_ch_index;
};
struct NodeComparator {
bool operator()(const Node& node_a, const Node& node_b) {
return node_a.count > node_b.count;
}
};
int num_classes_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_SOFTMAX_OP_H_
|