1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
#include "caffe2/operators/half_float_ops.h"
#include <c10/util/Half.h>
#include "caffe2/utils/cpuid.h"
#ifdef USE_FBGEMM
#include "fbgemm/FbgemmConvert.h"
#endif
namespace caffe2 {
inline void FloatToFloat16_ref(
const float* in,
at::Half* out,
size_t N,
bool do_clip = false) {
if (do_clip) {
constexpr float FP16_MAX = 65504.f;
for (size_t i = 0; i < N; ++i) {
out[i] = std::max(-FP16_MAX, std::min(in[i], FP16_MAX));
}
} else {
for (size_t i = 0; i < N; ++i) {
out[i] = in[i];
}
}
}
inline void Float16ToFloat_ref(const at::Half* in, float* out, size_t N) {
for (size_t i = 0; i < N; ++i) {
out[i] = in[i];
}
}
template <>
bool FloatToHalfOp<CPUContext>::RunOnDevice() {
auto& input = Input(0);
auto* output = Output(0, input.sizes(), at::dtype<at::Half>());
const float* data = input.template data<float>();
at::Half* out = output->template mutable_data<at::Half>();
auto N = input.numel();
#ifdef USE_FBGEMM
// There exists a verion fbgemm::FloatToFloat16_simd which will issue avx-512
// instructions when possible. However, this actually doesn't give perf
// benefits, according to benchmarks on T1/T6. Hence we stick to avx2 versions
// here.
if (GetCpuId().avx2()) {
fbgemm::FloatToFloat16_avx2(
data, reinterpret_cast<fbgemm::float16*>(out), N, clip_);
} else {
FloatToFloat16_ref(data, out, N, clip_);
}
#else
FloatToFloat16_ref(data, out, N, clip_);
#endif
return true;
}
template <>
bool HalfToFloatOp<CPUContext>::RunOnDevice() {
auto& input = Input(0);
auto* output = Output(0, input.sizes(), at::dtype<float>());
const at::Half* data = input.template data<at::Half>();
float* out = output->template mutable_data<float>();
auto N = input.numel();
#ifdef USE_FBGEMM
// Same reasoning of sticking to avx2
if (GetCpuId().avx2()) {
fbgemm::Float16ToFloat_avx2(
reinterpret_cast<const fbgemm::float16*>(data), out, N);
} else {
Float16ToFloat_ref(data, out, N);
}
#else
Float16ToFloat_ref(data, out, N);
#endif
return true;
}
REGISTER_CPU_OPERATOR(FloatToHalf, FloatToHalfOp<CPUContext>);
REGISTER_CPU_OPERATOR(HalfToFloat, HalfToFloatOp<CPUContext>);
OPERATOR_SCHEMA(FloatToHalf)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* unused */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
const TensorShape& X = in[0];
out.push_back(X);
out[0].set_data_type(TensorProto_DataType_FLOAT16);
return out;
});
OPERATOR_SCHEMA(HalfToFloat)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* unused */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
const TensorShape& X = in[0];
out.push_back(X);
out[0].set_data_type(TensorProto_DataType_FLOAT);
return out;
});
bool Float16ConstantFillOp::RunOnDevice() {
auto* output = Output(0, shape_, at::dtype<at::Half>());
const float givenValue =
this->template GetSingleArgument<float>("value", 0.0f);
at::Half givenFp16Value = givenValue;
if (output->numel()) {
at::Half* out = output->template mutable_data<at::Half>();
std::fill(out, out + output->numel(), givenFp16Value);
}
return true;
}
template <>
bool Float16UniformFillOp<CPUContext>::RunOnDevice() {
auto* output = Output(0, shape_, at::dtype<at::Half>());
at::Half* out = output->template mutable_data<at::Half>();
// Get a batch row by row and convert
auto leading_dim_sz = output->size(0);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int rowsz = output->numel() / output->size(0);
vector<float> intermediate_data_;
intermediate_data_.resize(rowsz);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (uint64_t i = 0; i < leading_dim_sz; i++) {
math::RandUniform<float, CPUContext>(
rowsz, min_, max_, intermediate_data_.data(), &context_);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (uint64_t j = 0; j < rowsz; j++) {
out[i * rowsz + j] = intermediate_data_[j];
}
}
return true;
}
REGISTER_CPU_OPERATOR(Float16ConstantFill, Float16ConstantFillOp);
REGISTER_CPU_OPERATOR(Float16UniformFill, Float16UniformFillOp<CPUContext>);
OPERATOR_SCHEMA(Float16UniformFill)
.NumInputs(0)
.NumOutputs(1)
.TensorInferenceFunction(Float16FillerTensorInference)
.SetDoc(
"Fills a half float tensor of a specified shape with"
" values from a uniform distribution[min,max]")
.Arg("shape", "Shape of the tensor")
.Arg("min", "Minimim value to generate")
.Arg("max", "Maximum value to generate");
NO_GRADIENT(Float16UniformFill);
OPERATOR_SCHEMA(Float16ConstantFill)
.NumInputs(0)
.NumOutputs(1)
.TensorInferenceFunction(Float16FillerTensorInference)
.Arg("value", "The value for the elements of the output tensor.")
.Arg("shape", "The shape of the output tensor.")
.Output(
0,
"output",
"Output tensor of constant values specified by 'value'");
class GetFloatToHalfGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"HalfToFloat", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(FloatToHalf, GetFloatToHalfGradient);
class GetHalfToFloatGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"FloatToHalf", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(HalfToFloat, GetHalfToFloatGradient);
NO_GRADIENT(Float16ConstantFill);
} // namespace caffe2
|