1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#include "caffe2/operators/hard_sigmoid_op.h"
#include <algorithm>
#include <functional>
#include <string>
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <>
template <typename T>
bool HardSigmoidFunctor<CPUContext>::
operator()(const int N, const T* X, T* Y, CPUContext* /* context */) const {
EigenVectorArrayMap<T>(Y, N) =
(ConstEigenVectorArrayMap<T>(X, N) * T(alpha) + T(beta))
.cwiseMin(T(1))
.cwiseMax(T(0));
return true;
}
template <>
template <typename T>
bool HardSigmoidGradientFunctor<CPUContext>::Forward(
const std::vector<int>& Y_dims,
const std::vector<int>& /* dY_dims */,
const T* Y,
const T* dY,
T* dX,
CPUContext* /* context */) const {
const int size = std::accumulate(
// NOLINTNEXTLINE(modernize-use-transparent-functors)
Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>());
ConstEigenVectorArrayMap<T> Y_arr(Y, size);
EigenVectorArrayMap<T>(dX, size) =
(Y_arr > T(0) && Y_arr < T(1))
.select(ConstEigenVectorArrayMap<T>(dY, size) * alpha, T(0));
return true;
}
namespace {
OpSchema::Cost CostInferenceForHardSigmoid(
const OperatorDef& def,
const vector<TensorShape>& in) {
struct OpSchema::Cost cost = PointwiseCostInference<4>(def, in);
cost.params_bytes = 0;
return cost;
}
} // namespace
REGISTER_CPU_OPERATOR(
HardSigmoid,
UnaryElementwiseWithArgsOp<
TensorTypes<float>,
CPUContext,
HardSigmoidFunctor<CPUContext>>);
REGISTER_CPU_OPERATOR(
HardSigmoidGradient,
BinaryElementwiseWithArgsOp<
TensorTypes<float>,
CPUContext,
HardSigmoidGradientFunctor<CPUContext>>);
// Input: X, output: Y
OPERATOR_SCHEMA(HardSigmoid)
.NumInputs(1)
.NumOutputs(1)
.AllowInplace({{0, 0}})
.CostInferenceFunction(CostInferenceForHardSigmoid)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Applies hard sigmoid operation to the input data element-wise.
The HardSigmoid operation takes one input $X$, produces one output $Y$, and is defined as:
$$Y = max(0,min(1,x * alpha + beta))$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/hard_sigmoid_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/hard_sigmoid_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"HardSigmoid",
["X"],
["Y"],
alpha = 0.2,
beta = 0.5,
)
workspace.FeedBlob("X", np.random.randn(5).astype(np.float32))
print("input:", workspace.FetchBlob("X"))
workspace.RunOperatorOnce(op)
print("sigmoid:", workspace.FetchBlob("Y"))
```
**Result**
```
input: [ 1.5744036 0.31632107 1.7842269 1.4450722 -2.1726978 ]
hard_sigmoid: [ 0.81488073, 0.56326419, 0.85684538, 0.78901446, 0.06546044]
```
</details>
)DOC")
.Arg("alpha", "float: the slope of the function. Defaults to 0.2")
.Arg("beta", "float: the bias value of the function. Defaults to 0.5")
.Input(0, "X", "1D input tensor")
.Output(0, "Y", "1D output tensor with same shape as input")
.InheritOnnxSchema();
// Input: Y, dY, output: dX
OPERATOR_SCHEMA(HardSigmoidGradient)
.NumInputs(2)
.NumOutputs(1)
.AllowInplace({{1, 0}})
.SetDoc(R"DOC(
HardSigmoidGradient takes both Y and dY as well as an argument alpha and uses
this to update dX according to the chain rule and derivatives of the hard
sigmoid function.
)DOC");
namespace {
class GetHardSigmoidGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
def_.type() + "Gradient",
"",
std::vector<std::string>{O(0), GO(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(HardSigmoid, GetHardSigmoidGradient);
} // namespace caffe2
|