1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
#include "caffe2/operators/index_ops.h"
#include <atomic>
#include <limits>
#include <mutex>
#include <sstream>
#include <unordered_map>
#include <vector>
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
namespace caffe2 {
// TODO(azzolini): support sizes larger than int32
template <class T>
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
class IndexCreateOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit IndexCreateOp(Args&&... args)
: Operator(std::forward<Args>(args)...),
maxElements_(OperatorBase::GetSingleArgument<int>(
"max_elements",
std::numeric_limits<int>::max())) {}
bool RunOnDevice() override {
*OperatorBase::Output<std::unique_ptr<IndexBase>>(0) =
std::unique_ptr<IndexBase>(new Index<T>(maxElements_));
return true;
}
private:
int64_tValue maxElements_;
};
class IndexGetOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit IndexGetOp(Args&&... args) : Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
return DispatchHelper<IndexKeyTypes>::call(this, Input(1));
}
template <typename T>
bool DoRunWithType() {
auto& base = OperatorBase::Input<std::unique_ptr<IndexBase>>(0);
auto* dict = dynamic_cast_if_rtti<Index<T>*>(base.get());
CAFFE_ENFORCE(dict, "Wrong dictionary type given input keys.");
const auto& keys = Input(1);
auto* values = Output(0, keys.sizes(), at::dtype<int64_tValue>());
dict->Get(
keys.data<T>(),
values->template mutable_data<int64_tValue>(),
keys.numel());
return true;
}
};
class IndexLoadOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit IndexLoadOp(Args&&... args)
: Operator(std::forward<Args>(args)...),
skipFirstEntry_(
OperatorBase::GetSingleArgument<int>("skip_first_entry", 0)) {}
bool RunOnDevice() override {
return DispatchHelper<IndexKeyTypes>::call(this, Input(1));
}
template <typename T>
bool DoRunWithType() {
auto& base = OperatorBase::Input<std::unique_ptr<IndexBase>>(0);
auto* dict = dynamic_cast_if_rtti<Index<T>*>(base.get());
CAFFE_ENFORCE(dict, "Wrong dictionary type given input keys.");
const auto& keys = Input(1);
const auto* keys_data = keys.data<T>();
auto keys_size = keys.numel();
if (skipFirstEntry_) {
CAFFE_ENFORCE(keys.numel() > 0);
++keys_data;
--keys_size;
}
return dict->Load(keys_data, keys_size);
}
private:
bool skipFirstEntry_;
};
class IndexStoreOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit IndexStoreOp(Args&&... args)
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
auto& base = OperatorBase::Input<std::unique_ptr<IndexBase>>(0);
return DispatchHelper<IndexKeyTypes>::call(this, base->Type());
}
template <typename T>
bool DoRunWithType() {
auto& base = OperatorBase::Input<std::unique_ptr<IndexBase>>(0);
auto* dict = dynamic_cast_if_rtti<Index<T>*>(base.get());
CAFFE_ENFORCE(dict);
return dict->Store(Output(0));
}
};
class IndexFreezeOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit IndexFreezeOp(Args&&... args)
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
auto& base = OperatorBase::Input<std::unique_ptr<IndexBase>>(0);
base->Freeze();
return true;
}
};
class IndexSizeOp : public Operator<CPUContext> {
public:
template <class... Args>
explicit IndexSizeOp(Args&&... args)
: Operator(std::forward<Args>(args)...) {}
bool RunOnDevice() override {
auto& base = OperatorBase::Input<std::unique_ptr<IndexBase>>(0);
auto* out = Output(0, std::vector<int64_t>{}, at::dtype<int64_tValue>());
*out->template mutable_data<int64_tValue>() = base->Size();
return true;
}
};
REGISTER_CPU_OPERATOR(IntIndexCreate, IndexCreateOp<int32_t>);
REGISTER_CPU_OPERATOR(LongIndexCreate, IndexCreateOp<int64_t>);
REGISTER_CPU_OPERATOR(StringIndexCreate, IndexCreateOp<std::string>);
REGISTER_CPU_OPERATOR(IndexGet, IndexGetOp);
REGISTER_CPU_OPERATOR(IndexLoad, IndexLoadOp);
REGISTER_CPU_OPERATOR(IndexStore, IndexStoreOp);
REGISTER_CPU_OPERATOR(IndexFreeze, IndexFreezeOp);
REGISTER_CPU_OPERATOR(IndexSize, IndexSizeOp);
OPERATOR_SCHEMA(IntIndexCreate)
.NumInputs(0)
.NumOutputs(1)
.SetDoc(R"DOC(
Creates a dictionary that maps int32 keys to consecutive integers
from 1 to max_elements. Zero is reserved for unknown keys.
)DOC")
.Arg("max_elements", "Max number of elements, including the zero entry.")
.Output(0, "handler", "Pointer to an Index instance.")
.ScalarType(TensorProto_DataType_UNDEFINED);
OPERATOR_SCHEMA(LongIndexCreate)
.NumInputs(0)
.NumOutputs(1)
.SetDoc(R"DOC(
Creates a dictionary that maps int64 keys to consecutive integers
from 1 to max_elements. Zero is reserved for unknown keys.
)DOC")
.Arg("max_elements", "Max number of elements, including the zero entry.")
.Output(0, "handler", "Pointer to an Index instance.")
.ScalarType(TensorProto_DataType_UNDEFINED);
OPERATOR_SCHEMA(StringIndexCreate)
.NumInputs(0)
.NumOutputs(1)
.SetDoc(R"DOC(
Creates a dictionary that maps string keys to consecutive integers
from 1 to max_elements. Zero is reserved for unknown keys.
)DOC")
.Arg("max_elements", "Max number of elements, including the zero entry.")
.Output(0, "handle", "Pointer to an Index instance.")
.ScalarType(TensorProto_DataType_UNDEFINED);
OPERATOR_SCHEMA(IndexGet)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Given an index handle and a tensor of keys, return an Int tensor of same shape
containing the indices for each of the keys. If the index is frozen, unknown
entries are given index 0. Otherwise, new entries are added into the index.
If an insert is necessary but max_elements has been reached, fail.
)DOC")
.Input(0, "handle", "Pointer to an Index instance.")
.Input(1, "keys", "Tensor of keys to be looked up.")
.Output(0, "indices", "Indices for each of the keys.")
.ScalarType(TensorProto::INT64);
OPERATOR_SCHEMA(IndexFreeze)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Freezes the given index, disallowing creation of new index entries.
Should not be called concurrently with IndexGet.
)DOC")
.Input(0, "handle", "Pointer to an Index instance.")
.Output(0, "handle", "The input handle.")
.EnforceInplace({{0, 0}})
.ScalarType(TensorProto_DataType_UNDEFINED);
OPERATOR_SCHEMA(IndexLoad)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Loads the index from the given 1-D tensor. Elements in the tensor will be given
consecutive indexes starting at 1. Fails if tensor contains repeated elements.
)DOC")
.Input(0, "handle", "Pointer to an Index instance.")
.Input(1, "items", "1-D tensor with elements starting with index 1.")
.Output(0, "handle", "The input handle.")
.EnforceInplace({{0, 0}})
.Arg(
"skip_first_entry",
"If set, skips the first entry of the tensor. This allows "
"to load tensors that are aligned with an embedding, where the first "
"entry corresponds to the default 0 index entry.")
.ScalarType(TensorProto_DataType_UNDEFINED);
OPERATOR_SCHEMA(IndexStore)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Stores the keys of this index in a 1-D tensor. Since element 0 is reserved
for unknowns, the first element of the output tensor will be element of index 1.
)DOC")
.Input(0, "handle", "Pointer to an Index instance.")
.Output(0, "items", "1-D tensor with elements starting with index 1.");
OPERATOR_SCHEMA(IndexSize)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
Returns the number of entries currently present in the index.
)DOC")
.Input(0, "handle", "Pointer to an Index instance.")
.Output(0, "items", "Scalar int64 tensor with number of entries.");
NO_GRADIENT(IndexGetOp);
NO_GRADIENT(IntIndexCreate);
NO_GRADIENT(LongIndexCreate);
NO_GRADIENT(StringIndexCreate);
SHOULD_NOT_DO_GRADIENT(IndexFreeze);
SHOULD_NOT_DO_GRADIENT(IndexLoad);
SHOULD_NOT_DO_GRADIENT(IndexStore);
SHOULD_NOT_DO_GRADIENT(IndexSize);
class IndexSerializer : public BlobSerializerBase {
public:
// NOLINTNEXTLINE(modernize-use-equals-default)
IndexSerializer() {}
// NOLINTNEXTLINE(modernize-use-equals-default)
~IndexSerializer() override {}
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<std::unique_ptr<IndexBase>>());
const auto& base = *static_cast<const std::unique_ptr<IndexBase>*>(pointer);
Blob tensor_blob;
auto* tensor_out = BlobGetMutableTensor(&tensor_blob, CPU);
if (base->Type().Match<std::string>()) {
doStore<std::string>(base, tensor_out);
} else if (base->Type().Match<int32_t>()) {
doStore<int32_t>(base, tensor_out);
} else if (base->Type().Match<int64_t>()) {
doStore<int64_t>(base, tensor_out);
} else {
CAFFE_THROW("Index of this type can't be serialized.");
}
CAFFE_ENFORCE(
tensor_out->numel() <= std::numeric_limits<int32_t>::max(),
"Index too large to be serialized.");
BlobProto blob_proto;
TensorSerializer ser;
ser.Serialize(
*tensor_out, name, blob_proto.mutable_tensor(), 0, tensor_out->numel());
blob_proto.set_name(name);
blob_proto.set_type("std::unique_ptr<caffe2::IndexBase>");
std::ostringstream os;
os << base->maxElements() << " " << base->isFrozen();
blob_proto.set_content(os.str());
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
private:
template <typename T>
void doStore(const std::unique_ptr<IndexBase>& base, Tensor* tensor_out) {
auto* dict = dynamic_cast_if_rtti<Index<T>*>(base.get());
CAFFE_ENFORCE(dict, "Wrong dictionary type.");
dict->Store(tensor_out);
}
};
class IndexDeserializer : public BlobDeserializerBase {
public:
void Deserialize(const BlobProto& proto, Blob* blob) override {
TensorDeserializer deser;
Blob tensor_blob;
deser.Deserialize(proto, &tensor_blob);
std::istringstream is(proto.content());
int64_t maxElements{std::numeric_limits<int64_t>::max()};
bool isFrozen{false};
is >> maxElements >> isFrozen;
auto& tensor_in = tensor_blob.template Get<Tensor>();
auto* base = blob->template GetMutable<std::unique_ptr<IndexBase>>();
if (tensor_in.IsType<std::string>()) {
doLoad<std::string>(base, maxElements, tensor_in);
} else if (tensor_in.IsType<int32_t>()) {
doLoad<int32_t>(base, maxElements, tensor_in);
} else if (tensor_in.IsType<int64_t>()) {
doLoad<int64_t>(base, maxElements, tensor_in);
} else {
CAFFE_THROW("Index of this type cannot be deserialized.");
}
if (isFrozen) {
(*base)->Freeze();
}
}
private:
template <typename T>
void doLoad(
std::unique_ptr<IndexBase>* base,
int64_t maxElements,
const Tensor& tensor_in) {
base->reset(new Index<T>(maxElements));
auto* dict = dynamic_cast_if_rtti<Index<T>*>(base->get());
dict->Load(tensor_in.data<T>(), tensor_in.numel());
}
};
CAFFE_KNOWN_TYPE(std::unique_ptr<caffe2::IndexBase>);
REGISTER_BLOB_SERIALIZER(
(TypeMeta::Id<std::unique_ptr<caffe2::IndexBase>>()),
IndexSerializer);
REGISTER_BLOB_DESERIALIZER(
std::unique_ptr<caffe2::IndexBase>,
IndexDeserializer);
} // namespace caffe2
|