1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
#include "caffe2/operators/instance_norm_op.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
namespace {
template <typename T>
void ComputeFusedParams(
const int64_t N,
const int64_t C,
const T* mean,
const T* rstd,
const T* gamma,
const T* beta,
T* scale,
T* bias) {
ConstEigenArrayMap<T> mean_arr(mean, C, N);
ConstEigenArrayMap<T> rstd_arr(rstd, C, N);
ConstEigenVectorArrayMap<T> gamma_arr(gamma, C);
ConstEigenVectorArrayMap<T> beta_arr(beta, C);
EigenArrayMap<T> scale_arr(scale, C, N);
EigenArrayMap<T> bias_arr(bias, C, N);
scale_arr = rstd_arr.colwise() * gamma_arr;
bias_arr = (-scale_arr * mean_arr).colwise() + beta_arr;
}
template <typename T>
void InstanceNormForwardNHWC(
const int64_t N,
const int64_t C,
const int64_t HxW,
const T* X,
const T* scale,
const T* bias,
T* Y) {
ConstEigenArrayMap<T> scale_arr(scale, C, N);
ConstEigenArrayMap<T> bias_arr(bias, C, N);
for (int64_t i = 0; i < N; ++i) {
ConstEigenArrayMap<T> X_arr(X + i * HxW * C, C, HxW);
EigenArrayMap<T> Y_arr(Y + i * HxW * C, C, HxW);
Y_arr = (X_arr.colwise() * scale_arr.col(i)).colwise() + bias_arr.col(i);
}
}
} // namespace
template <>
bool InstanceNormOp<float, CPUContext>::RunOnDeviceWithOrderNCHW(
const int64_t N,
const int64_t C,
const int64_t HxW,
const float* X,
const float* gamma,
const float* beta,
float* Y,
float* mean,
float* rstd) {
ConstEigenArrayMap<float> X_arr(X, HxW, N * C);
for (int64_t i = 0; i < N * C; ++i) {
const float mean_val = X_arr.col(i).mean();
float rstd_val =
std::max(X_arr.col(i).square().mean() - mean_val * mean_val, 0.0f);
rstd_val = 1.0f / std::sqrt(rstd_val + epsilon_);
const int64_t c = i % C;
const float scale = gamma[c] * rstd_val;
const float bias = beta[c] - scale * mean_val;
for (int64_t j = 0; j < HxW; ++j) {
Y[i * HxW + j] = scale * X[i * HxW + j] + bias;
}
mean[i] = mean_val;
rstd[i] = rstd_val;
}
return true;
}
template <>
bool InstanceNormOp<float, CPUContext>::RunOnDeviceWithOrderNHWC(
const int64_t N,
const int64_t C,
const int64_t HxW,
const float* X,
const float* gamma,
const float* beta,
float* Y,
float* mean,
float* rstd) {
ReinitializeTensor(&scale_, {N, C}, at::dtype<float>().device(CPU));
ReinitializeTensor(&bias_, {N, C}, at::dtype<float>().device(CPU));
float* scale_data = scale_.template mutable_data<float>();
float* bias_data = bias_.template mutable_data<float>();
const float c = 1.0f / static_cast<float>(HxW);
EigenArrayMap<float> mean_arr(mean, C, N);
EigenArrayMap<float> rstd_arr(rstd, C, N);
for (int64_t n = 0; n < N; ++n) {
ConstEigenArrayMap<float> X_arr(X + n * HxW * C, C, HxW);
mean_arr.col(n) = X_arr.col(0);
rstd_arr.col(n) = X_arr.col(0).square();
for (int64_t i = 1; i < HxW; ++i) {
mean_arr.col(n) += X_arr.col(i);
rstd_arr.col(n) += X_arr.col(i).square();
}
}
mean_arr *= c;
rstd_arr = ((rstd_arr * c - mean_arr.square()).max(0.0f) + epsilon_).rsqrt();
ComputeFusedParams<float>(
N, C, mean, rstd, gamma, beta, scale_data, bias_data);
InstanceNormForwardNHWC<float>(N, C, HxW, X, scale_data, bias_data, Y);
return true;
}
REGISTER_CPU_OPERATOR(InstanceNorm, InstanceNormOp<float, CPUContext>);
OPERATOR_SCHEMA(InstanceNorm)
.NumInputs(3)
.NumOutputs(1, 3)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
The *InstanceNorm* op applies Instance Normalization over a 4D input as described in [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
$$output = \frac{input-\mu_{input}}{\sqrt{\sigma_{input}^2} + \epsilon}*scale + bias$$
Notice, two of the outputs are optional so there are three output cases for this op. Case 1: output; Case 2: output, saved_mean; Case 3: output, saved_mean, saved_inv_stdev.
Github Links:
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/instance_norm_op.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/instance_norm_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"InstanceNorm",
["input", "scale", "bias"],
["output"],
epsilon=1e-5,
)
workspace.FeedBlob("input", np.random.randn(2, 1, 3, 3).astype(np.float32))
print("input:\n", workspace.FetchBlob("input"), "\n")
workspace.FeedBlob("scale", np.array([1.5]).astype(np.float32))
print("scale: ", workspace.FetchBlob("scale"))
workspace.FeedBlob("bias", np.array([1.]).astype(np.float32))
print("bias: ", workspace.FetchBlob("bias"))
workspace.RunOperatorOnce(op)
print("output:\n", workspace.FetchBlob("output"))
```
**Result**
```
input:
[[[[ 0.97856593 -1.1832817 -0.2540021 ]
[-1.3315694 -0.7485018 0.3787225 ]
[-0.6826597 -1.4637762 0.57116514]]]
[[[-0.44948956 0.85544354 -0.9315333 ]
[-0.37202677 -0.22266895 -0.27194235]
[ 0.4948163 -0.7296504 1.3393803 ]]]]
scale: [1.5]
bias: [1.]
output:
[[[[ 3.5017493 -0.3791256 1.2890853 ]
[-0.6453266 0.40137637 2.4249308 ]
[ 0.5195738 -0.8826599 2.7703972 ]]]
[[[ 0.12639964 2.856744 -0.8821926 ]
[ 0.28847694 0.60098207 0.49788612]
[ 2.1021945 -0.45978796 3.869297 ]]]]
```
</details>
)DOC")
.Arg(
"epsilon",
"*(type: float; default: 1e-5)* The epsilon value to use to avoid division by zero.")
.Arg(
"order",
// NOLINTNEXTLINE(modernize-raw-string-literal)
"*(type: string; default: \"NCHW\")* Specifies the order of the input data blob, where $N$ is batch size, $C$ is number of channels, $H$ is spatial height, and $W$ is spatial width. The only other valid option is \"NHWC\".")
.Input(0, "input", "The input 4-dimensional NCHW tensor to be operated on.")
.Input(1, "scale", "The input 1-dimensional scale tensor of size *C*.")
.Input(2, "bias", "The input 1-dimensional bias tensor of size *C*.")
.Output(
0,
"output",
"The output 4-dimensional tensor of the same shape as input.")
.Output(
1,
"saved_mean",
"(Optional) Saved mean used during training to speed up gradient computation. Should not be used for testing.")
.Output(
2,
"saved_inv_stdev",
"(Optional) Saved inverse stdev used during training to speed up gradient computation. Should not be used for testing.");
} // namespace caffe2
|