File: instance_norm_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (217 lines) | stat: -rw-r--r-- 6,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include "caffe2/operators/instance_norm_op.h"

#include "caffe2/utils/eigen_utils.h"

namespace caffe2 {

namespace {

template <typename T>
void ComputeFusedParams(
    const int64_t N,
    const int64_t C,
    const T* mean,
    const T* rstd,
    const T* gamma,
    const T* beta,
    T* scale,
    T* bias) {
  ConstEigenArrayMap<T> mean_arr(mean, C, N);
  ConstEigenArrayMap<T> rstd_arr(rstd, C, N);
  ConstEigenVectorArrayMap<T> gamma_arr(gamma, C);
  ConstEigenVectorArrayMap<T> beta_arr(beta, C);
  EigenArrayMap<T> scale_arr(scale, C, N);
  EigenArrayMap<T> bias_arr(bias, C, N);
  scale_arr = rstd_arr.colwise() * gamma_arr;
  bias_arr = (-scale_arr * mean_arr).colwise() + beta_arr;
}

template <typename T>
void InstanceNormForwardNHWC(
    const int64_t N,
    const int64_t C,
    const int64_t HxW,
    const T* X,
    const T* scale,
    const T* bias,
    T* Y) {
  ConstEigenArrayMap<T> scale_arr(scale, C, N);
  ConstEigenArrayMap<T> bias_arr(bias, C, N);
  for (int64_t i = 0; i < N; ++i) {
    ConstEigenArrayMap<T> X_arr(X + i * HxW * C, C, HxW);
    EigenArrayMap<T> Y_arr(Y + i * HxW * C, C, HxW);
    Y_arr = (X_arr.colwise() * scale_arr.col(i)).colwise() + bias_arr.col(i);
  }
}

} // namespace

template <>
bool InstanceNormOp<float, CPUContext>::RunOnDeviceWithOrderNCHW(
    const int64_t N,
    const int64_t C,
    const int64_t HxW,
    const float* X,
    const float* gamma,
    const float* beta,
    float* Y,
    float* mean,
    float* rstd) {
  ConstEigenArrayMap<float> X_arr(X, HxW, N * C);
  for (int64_t i = 0; i < N * C; ++i) {
    const float mean_val = X_arr.col(i).mean();
    float rstd_val =
        std::max(X_arr.col(i).square().mean() - mean_val * mean_val, 0.0f);
    rstd_val = 1.0f / std::sqrt(rstd_val + epsilon_);
    const int64_t c = i % C;
    const float scale = gamma[c] * rstd_val;
    const float bias = beta[c] - scale * mean_val;
    for (int64_t j = 0; j < HxW; ++j) {
      Y[i * HxW + j] = scale * X[i * HxW + j] + bias;
    }
    mean[i] = mean_val;
    rstd[i] = rstd_val;
  }
  return true;
}

template <>
bool InstanceNormOp<float, CPUContext>::RunOnDeviceWithOrderNHWC(
    const int64_t N,
    const int64_t C,
    const int64_t HxW,
    const float* X,
    const float* gamma,
    const float* beta,
    float* Y,
    float* mean,
    float* rstd) {
  ReinitializeTensor(&scale_, {N, C}, at::dtype<float>().device(CPU));
  ReinitializeTensor(&bias_, {N, C}, at::dtype<float>().device(CPU));
  float* scale_data = scale_.template mutable_data<float>();
  float* bias_data = bias_.template mutable_data<float>();
  const float c = 1.0f / static_cast<float>(HxW);
  EigenArrayMap<float> mean_arr(mean, C, N);
  EigenArrayMap<float> rstd_arr(rstd, C, N);
  for (int64_t n = 0; n < N; ++n) {
    ConstEigenArrayMap<float> X_arr(X + n * HxW * C, C, HxW);
    mean_arr.col(n) = X_arr.col(0);
    rstd_arr.col(n) = X_arr.col(0).square();
    for (int64_t i = 1; i < HxW; ++i) {
      mean_arr.col(n) += X_arr.col(i);
      rstd_arr.col(n) += X_arr.col(i).square();
    }
  }
  mean_arr *= c;
  rstd_arr = ((rstd_arr * c - mean_arr.square()).max(0.0f) + epsilon_).rsqrt();
  ComputeFusedParams<float>(
      N, C, mean, rstd, gamma, beta, scale_data, bias_data);
  InstanceNormForwardNHWC<float>(N, C, HxW, X, scale_data, bias_data, Y);
  return true;
}

REGISTER_CPU_OPERATOR(InstanceNorm, InstanceNormOp<float, CPUContext>);

OPERATOR_SCHEMA(InstanceNorm)
    .NumInputs(3)
    .NumOutputs(1, 3)
    .AllowInplace({{0, 0}})
    .SetDoc(R"DOC(
The *InstanceNorm* op applies Instance Normalization over a 4D input as described in [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).

$$output = \frac{input-\mu_{input}}{\sqrt{\sigma_{input}^2} + \epsilon}*scale + bias$$

Notice, two of the outputs are optional so there are three output cases for this op. Case 1: output; Case 2: output, saved_mean; Case 3: output, saved_mean, saved_inv_stdev.

Github Links:

- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/instance_norm_op.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/instance_norm_op.cc


<details>

<summary> <b>Example</b> </summary>

**Code**

```

workspace.ResetWorkspace()

op = core.CreateOperator(
    "InstanceNorm",
    ["input", "scale", "bias"],
    ["output"],
    epsilon=1e-5,
)

workspace.FeedBlob("input", np.random.randn(2, 1, 3, 3).astype(np.float32))
print("input:\n", workspace.FetchBlob("input"), "\n")

workspace.FeedBlob("scale", np.array([1.5]).astype(np.float32))
print("scale: ", workspace.FetchBlob("scale"))

workspace.FeedBlob("bias", np.array([1.]).astype(np.float32))
print("bias: ", workspace.FetchBlob("bias"))

workspace.RunOperatorOnce(op)
print("output:\n", workspace.FetchBlob("output"))

```

**Result**

```

input:
 [[[[ 0.97856593 -1.1832817  -0.2540021 ]
   [-1.3315694  -0.7485018   0.3787225 ]
   [-0.6826597  -1.4637762   0.57116514]]]


 [[[-0.44948956  0.85544354 -0.9315333 ]
   [-0.37202677 -0.22266895 -0.27194235]
   [ 0.4948163  -0.7296504   1.3393803 ]]]]

scale:  [1.5]
bias:  [1.]
output:
 [[[[ 3.5017493  -0.3791256   1.2890853 ]
   [-0.6453266   0.40137637  2.4249308 ]
   [ 0.5195738  -0.8826599   2.7703972 ]]]


 [[[ 0.12639964  2.856744   -0.8821926 ]
   [ 0.28847694  0.60098207  0.49788612]
   [ 2.1021945  -0.45978796  3.869297  ]]]]

```

</details>

)DOC")
    .Arg(
        "epsilon",
        "*(type: float; default: 1e-5)* The epsilon value to use to avoid division by zero.")
    .Arg(
        "order",
        // NOLINTNEXTLINE(modernize-raw-string-literal)
        "*(type: string; default: \"NCHW\")* Specifies the order of the input data blob, where $N$ is batch size, $C$ is number of channels, $H$ is spatial height, and $W$ is spatial width. The only other valid option is \"NHWC\".")
    .Input(0, "input", "The input 4-dimensional NCHW tensor to be operated on.")
    .Input(1, "scale", "The input 1-dimensional scale tensor of size *C*.")
    .Input(2, "bias", "The input 1-dimensional bias tensor of size *C*.")
    .Output(
        0,
        "output",
        "The output 4-dimensional tensor of the same shape as input.")
    .Output(
        1,
        "saved_mean",
        "(Optional) Saved mean used during training to speed up gradient computation. Should not be used for testing.")
    .Output(
        2,
        "saved_inv_stdev",
        "(Optional) Saved inverse stdev used during training to speed up gradient computation. Should not be used for testing.");

} // namespace caffe2