File: leaky_relu_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (71 lines) | stat: -rw-r--r-- 1,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/leaky_relu_op.h"

#include "caffe2/utils/math.h"

namespace caffe2 {
namespace {
template <typename T>
__global__ void LeakyReluKernel(const int N, const T alpha, const T* X, T* Y) {
  CUDA_1D_KERNEL_LOOP(i, N) {
    Y[i] = X[i] >= 0 ? X[i] : X[i] * alpha;
  }
}

template <typename T>
__global__ void LeakyReluGradientKernel(
    const int N,
    const T alpha,
    const T* Y,
    const T* dY,
    T* dX) {
  CUDA_1D_KERNEL_LOOP(i, N) {
    dX[i] = Y[i] >= 0 ? dY[i] : dY[i] * alpha;
  }
}
} // namespace

template <>
bool LeakyReluOp<float, CUDAContext>::RunOnDevice() {
  const auto& X = Input(0);
  CAFFE_ENFORCE_GT(X.numel(), 0);

  auto* Y = Output(0, X.sizes(), at::dtype<float>());
  LeakyReluKernel<<<
      CAFFE_GET_BLOCKS(X.numel()),
      CAFFE_CUDA_NUM_THREADS,
      0,
      context_.cuda_stream()>>>(
      X.numel(), alpha_, X.data<float>(), Y->template mutable_data<float>());
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

template <>
bool LeakyReluGradientOp<float, CUDAContext>::RunOnDevice() {
  const auto& Y = Input(0);
  const auto& dY = Input(1);

  auto* dX = Output(0, Y.sizes(), at::dtype<float>());
  CAFFE_ENFORCE_EQ(Y.numel(), dY.numel());
  LeakyReluGradientKernel<<<
      CAFFE_GET_BLOCKS(Y.numel()),
      CAFFE_CUDA_NUM_THREADS,
      0,
      context_.cuda_stream()>>>(
      Y.numel(),
      alpha_,
      Y.data<float>(),
      dY.data<float>(),
      dX->template mutable_data<float>());
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

REGISTER_CUDA_OPERATOR(LeakyRelu, LeakyReluOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
    LeakyReluGradient,
    LeakyReluGradientOp<float, CUDAContext>);
} // namespace caffe2