File: lengths_pad_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (60 lines) | stat: -rw-r--r-- 1,861 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include "caffe2/operators/lengths_pad_op.h"

namespace caffe2 {
REGISTER_CPU_OPERATOR(LengthsPad, LengthsPadOp<CPUContext>);

OPERATOR_SCHEMA(LengthsPad)
    .NumInputs(2)
    .NumOutputs(1)
    .SetDoc(R"DOC(
Given DATA tensor of rank r >= 1, and LENGTHS tensor of rank 1, pad each
segment in DATA with `value`, so that each segment's length is `target_length`.
If will throw, if there is segment of length larger than `target_length`.

Example:
  DATA  = [
      [2.3, 3.4],
      [4.5, 5.7],
      [6.8, 7.9],
  ]
  LENGTHS = [0, 1, 1, 1]
  and target_length = 2, padding value = -1.0
  OUTPUT = [
    [-1.0, -1.0],
    [-1.0, -1.0],
    [2.3, 3.4],
    [-1.0, -1.0],
    [4.5, 5.7],
    [-1.0, -1.0],
    [6.8, 7.9],
    [-1.0, -1.0],
  ]
)DOC")
    .Input(
        0,
        "DATA",
        "Tensor of rank r >= 1. First dimension must be equal to the size of "
        "lengths")
    .Input(1, "LENGTHS", "Tensor of int32 lengths of rank 1")
    .Output(0, "OUTPUT", "Padded DATA tensor")
    .Arg("padding_value", "The value to pad the data")
    .Arg("target_length", "The target length of each segment")
    .TensorInferenceFunction([](const OperatorDef& def,
                                const vector<TensorShape>& in) {
      vector<TensorShape> out(1);
      ArgumentHelper helper(def);
      int target_length = helper.GetSingleArgument<int>("target_length", -1);
      CAFFE_ENFORCE_GE(target_length, 1);
      vector<int> output_dims;
      const auto& data_dims = GetDimsVector(in[0]);
      const auto& lengths_dims = GetDimsVector(in[1]);
      output_dims.push_back(lengths_dims[0] * target_length);
      output_dims.insert(
          output_dims.end(), data_dims.begin() + 1, data_dims.end());

      out[0] = CreateTensorShape(output_dims, in[0].data_type());
      return out;
    });

NO_GRADIENT(LengthsPad);
} // namespace caffe2