1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#ifndef CAFFE2_OPERATORS_LENGTHS_REDUCER_FUSED_8BIT_ROWWISE_OPS_H_
#define CAFFE2_OPERATORS_LENGTHS_REDUCER_FUSED_8BIT_ROWWISE_OPS_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/fused_rowwise_8bit_conversion_ops.h"
#include "caffe2/operators/reducer_functors.h"
#include "caffe2/perfkernels/fused_8bit_rowwise_embedding_lookup.h"
#include "caffe2/utils/math.h"
#ifdef USE_FBGEMM
#include "fbgemm/Fbgemm.h"
#endif
namespace caffe2 {
template <class Context, bool with_weights = false, bool is_mean = false>
class SparseLengthsFused8BitRowwiseOp : public Operator<Context> {
public:
static_assert(
!(with_weights && is_mean),
"Cannot have with_weights and is_mean a the same time");
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(SparseLengthsFused8BitRowwiseOp)
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename IndexType>
bool DoRunWithType() {
const auto& data = Input(DATA);
const auto& indices = Input(INDICES);
const auto& lengths = Input(LENGTHS);
CAFFE_ENFORCE_EQ(indices.dim(), 1, "INDICES must be a vector");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTHS must be a vector");
const float* weights = nullptr;
if (with_weights) {
const auto& weights_input = Input(WEIGHTS);
CAFFE_ENFORCE_EQ(weights_input.dim(), 1, "WEIGHTS must be a vector");
CAFFE_ENFORCE_EQ(
weights_input.numel(),
indices.numel(),
"WEIGHTS should have the same length as INDICES.");
weights = weights_input.template data<float>();
}
CAFFE_ENFORCE_GT(data.size(1), 8, "DATA must have more than 8 columns");
// Subtract 8 from the #columns of data for the 4 bytes for scale and 4
// bytes for bias that we use in the fused representation (per row).
const std::vector<int64_t> shape = {lengths.size(0), data.size(1) - 8};
auto* output = Output(0, shape, at::dtype<float>());
std::int64_t block_size = output->size(1);
auto output_size = output->size(0);
auto index_size = indices.numel();
auto data_size = data.size(0);
const std::uint8_t* input_data = data.template data<std::uint8_t>();
const int* lengths_data = lengths.template data<int>();
float* output_data = output->template mutable_data<float>();
#ifdef USE_FBGEMM
// Calling the JITed kernel from FBGEMM
// Will Remove the call to C2/perfkernels/
// If this is the first call or block size has changed (should never happen
// actually), generate a kernel.
if (block_size != last_block_size) {
last_block_size = block_size;
if (std::is_same<IndexType, std::int32_t>::value) {
kernel32_ = fbgemm::GenerateEmbeddingSpMDM<std::uint8_t, std::int32_t>(
block_size,
with_weights,
is_mean,
/*prefetch distance*/ 16,
/*is_weight_positional*/ false,
/*use_offsets*/ false);
} else {
CAFFE_ENFORCE((std::is_same<IndexType, std::int64_t>::value));
kernel64_ = fbgemm::GenerateEmbeddingSpMDM<std::uint8_t, std::int64_t>(
block_size,
with_weights,
is_mean,
/*prefetch distance*/ 16,
/*is_weight_positional*/ false,
/*use_offsets*/ false);
}
}
bool success;
if (std::is_same<IndexType, std::int32_t>::value) {
success = kernel32_(
output_size,
index_size,
data_size,
input_data,
indices.template data<std::int32_t>(),
lengths_data,
weights,
output_data);
} else {
success = kernel64_(
output_size,
index_size,
data_size,
input_data,
indices.template data<std::int64_t>(),
lengths_data,
weights,
output_data);
}
if (success) {
return true;
}
auto indices_data = indices.template data<IndexType>();
int64_t current = 0;
for (const auto m : c10::irange(output_size)) {
for (int i = 0; i < lengths_data[m]; ++i) {
CAFFE_ENFORCE_LT(current, index_size);
IndexType idx = indices_data[current];
CAFFE_ENFORCE(
0 <= idx && idx < data_size,
"Index ",
current,
" is out of bounds: ",
idx,
", range 0 to ",
data_size);
++current;
}
}
CAFFE_ENFORCE_EQ(
current,
index_size,
"Your input seems to be incorrect: the sum of lengths values should be "
"the size of the indices tensor, but it appears not.");
return false;
#else
Fused8BitRowwiseEmbeddingLookup(
block_size,
output_size,
index_size,
data_size,
input_data,
indices.template data<IndexType>(),
lengths_data,
weights,
is_mean,
output_data);
return true;
#endif
}
enum {
DATA = 0,
WEIGHTS = 1,
INDICES = 1 + with_weights,
LENGTHS = 2 + with_weights,
};
#ifdef USE_FBGEMM
private:
std::int64_t last_block_size{-1};
fbgemm::EmbeddingSpMDMKernelSignature<std::uint8_t, std::int32_t>::Type
kernel32_;
fbgemm::EmbeddingSpMDMKernelSignature<std::uint8_t, std::int64_t>::Type
kernel64_;
#endif
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_LENGTHS_REDUCER_FUSED_8BIT_ROWWISE_OPS_H_
|