1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
#pragma once
#include <c10/util/irange.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/perfkernels/embedding_lookup.h"
#ifdef USE_FBGEMM
#include "fbgemm/Fbgemm.h"
#endif
#include <algorithm>
#include <functional>
namespace caffe2 {
// A templated class that implements SparseLengths[Sum,WeightedSum,Mean].
template <
typename T, // output type
class InputTypes, // supported input types, such as TensorTypes<float>
bool USE_WEIGHT = false, // Whether it is SparseLengthsWeightedSum
bool USE_MEAN = false, // Whether this is SparseLengthsMean
bool USE_POSITIONAL_WEIGHT = false
// USE_WEIGHT = true and USE_POSITIONAL_WEIGHT = true
// -> SparseLengthsPositionalWeightedSum
>
class CPUSparseLengthsReductionOp : public Operator<CPUContext> {
public:
USE_OPERATOR_FUNCTIONS(CPUContext);
template <class... Args>
explicit CPUSparseLengthsReductionOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...) {
static_assert(
!(USE_WEIGHT & USE_MEAN), "Cannot both specify weight and mean.");
}
~CPUSparseLengthsReductionOp() {}
// Currently, we support float and at::Half inputs for input data type, and
// int32_t and int64_t for the index type.
bool RunOnDevice() override {
return DispatchHelper<InputTypes>::call(this, Input(DATA));
}
template <typename InputType>
bool DoRunWithType() {
return DispatchHelper<TensorTypes2<int32_t, int64_t>, InputType>::call(
this, Input(INDICES));
}
template <typename InputType, typename IndexType>
bool DoRunWithType2() {
auto& dataInput = Input(DATA);
auto& indicesInput = Input(INDICES);
auto& lengthsInput = Input(LENGTHS);
const int64_t M = lengthsInput.size(0);
const int64_t indices_size = indicesInput.numel();
auto shape = dataInput.sizes().vec();
shape[0] = M;
auto* output = Output(0, shape, at::dtype<T>());
T* out_data = output->template mutable_data<T>();
if (indices_size == 0) {
if (M > 0) {
memset(out_data, 0, output->numel() * sizeof(T));
}
return true;
}
CAFFE_ENFORCE_EQ(1, indicesInput.dim(), "INDICES must be a vector");
CAFFE_ENFORCE_EQ(1, lengthsInput.dim(), "LENGTHS must be a vector");
const int64_t N = dataInput.size(0);
const int D = dataInput.size_from_dim(1);
const InputType* in_data = dataInput.template data<InputType>();
const IndexType* indices = indicesInput.template data<IndexType>();
const int* lengths = lengthsInput.template data<int>();
const T* in_weight = nullptr;
if (USE_WEIGHT) {
// static if
auto& weightInput = Input(WEIGHT);
CAFFE_ENFORCE_EQ(1, weightInput.dim(), "WEIGHT must be a vector");
if (!USE_POSITIONAL_WEIGHT) {
CAFFE_ENFORCE_EQ(
weightInput.numel(),
indices_size,
"Weight should have the same length as indices.");
}
in_weight = weightInput.template data<T>();
}
#ifdef USE_FBGEMM
// If this is the first call or block size has changed (should never
// happen actually), generate a kernel.
if (D != last_block_size) {
last_block_size = D;
if (std::is_same<InputType, float>::value) {
if (std::is_same<IndexType, std::int32_t>::value) {
kernel_fp32_i32_ =
fbgemm::GenerateEmbeddingSpMDM<float, std::int32_t>(
D,
USE_WEIGHT,
USE_MEAN,
/*prefetch distance*/ 16,
USE_POSITIONAL_WEIGHT,
/*use_offsets*/ false);
} else {
CAFFE_ENFORCE((std::is_same<IndexType, std::int64_t>::value));
kernel_fp32_i64_ =
fbgemm::GenerateEmbeddingSpMDM<float, std::int64_t>(
D,
USE_WEIGHT,
USE_MEAN,
/*prefetch distance*/ 16,
USE_POSITIONAL_WEIGHT,
/*use_offsets*/ false);
}
} else {
CAFFE_ENFORCE((std::is_same<InputType, at::Half>::value));
if (std::is_same<IndexType, std::int32_t>::value) {
kernel_fp16_i32_ =
fbgemm::GenerateEmbeddingSpMDM<fbgemm::float16, std::int32_t>(
D,
USE_WEIGHT,
USE_MEAN,
/*prefetch distance*/ 16,
USE_POSITIONAL_WEIGHT,
/*use_offsets*/ false);
} else {
CAFFE_ENFORCE((std::is_same<IndexType, std::int64_t>::value));
kernel_fp16_i64_ =
fbgemm::GenerateEmbeddingSpMDM<fbgemm::float16, std::int64_t>(
D,
USE_WEIGHT,
USE_MEAN,
/*prefetch distance*/ 16,
USE_POSITIONAL_WEIGHT,
/*use_offsets*/ false);
}
}
}
bool success;
if (std::is_same<InputType, float>::value) {
if (std::is_same<IndexType, std::int32_t>::value) {
success = kernel_fp32_i32_(
M,
indices_size,
N,
reinterpret_cast<const float*>(in_data),
indicesInput.template data<std::int32_t>(),
lengths,
in_weight,
out_data);
} else {
success = kernel_fp32_i64_(
M,
indices_size,
N,
reinterpret_cast<const float*>(in_data),
indicesInput.template data<std::int64_t>(),
lengths,
in_weight,
out_data);
}
} else {
if (std::is_same<IndexType, std::int32_t>::value) {
success = kernel_fp16_i32_(
M,
indices_size,
N,
reinterpret_cast<const fbgemm::float16*>(in_data),
indicesInput.template data<std::int32_t>(),
lengths,
in_weight,
out_data);
} else {
success = kernel_fp16_i64_(
M,
indices_size,
N,
reinterpret_cast<const fbgemm::float16*>(in_data),
indicesInput.template data<std::int64_t>(),
lengths,
in_weight,
out_data);
}
}
if (success) {
return true;
}
int64_t current = 0;
for (const auto m : c10::irange(M)) {
for (int i = 0; i < lengths[m]; ++i) {
CAFFE_ENFORCE_LT(
current,
indices_size,
"Your input seems to be incorrect: the sum of lengths values "
"should be the size of the indices tensor, but it appears not.");
IndexType idx = indices[current];
CAFFE_ENFORCE(
0 <= idx && idx < N,
"Index ",
current,
" is out of bounds: ",
idx,
", range 0 to ",
N,
", actual batch length is ",
M);
++current;
}
}
CAFFE_ENFORCE_EQ(
current,
indices_size,
"Your input seems to be incorrect: the sum of lengths values should be "
"the size of the indices tensor, but it appears not.");
return false;
#endif
// delegate work to perfkernel that branches based on architecture
EmbeddingLookup<IndexType, InputType, T, USE_POSITIONAL_WEIGHT>(
D,
M,
indices_size,
N,
in_data,
indices,
lengths,
in_weight,
nullptr, // scale_bias field is only used in SparseLengths8BitsRowwiseOp
USE_MEAN,
out_data);
return true;
}
enum {
DATA = 0, // Data input.
WEIGHT = 1, // Weight input used in SparseLengthsWeightedSum
INDICES = 1 + USE_WEIGHT, // 1 in SparseLengths[Sum,Mean] and
// 2 in SparseLengthsWeightedSum
LENGTHS = 2 + USE_WEIGHT, // 2 in SparseLengths[Sum, Mean],
// 3 in SparseLengthsWeightedSum
};
#ifdef USE_FBGEMM
private:
std::int64_t last_block_size{-1};
fbgemm::EmbeddingSpMDMKernelSignature<float, std::int32_t>::Type
kernel_fp32_i32_;
fbgemm::EmbeddingSpMDMKernelSignature<float, std::int64_t>::Type
kernel_fp32_i64_;
fbgemm::EmbeddingSpMDMKernelSignature<fbgemm::float16, std::int32_t>::Type
kernel_fp16_i32_;
fbgemm::EmbeddingSpMDMKernelSignature<fbgemm::float16, std::int64_t>::Type
kernel_fp16_i64_;
#endif
};
template <typename T, class Context, class Engine = DefaultEngine>
class TTSparseLengthsSumOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit TTSparseLengthsSumOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
factor_i(this->template GetRepeatedArgument<int>(
"factor_i",
vector<int>{1, 1, 1})),
factor_j(this->template GetRepeatedArgument<int>(
"factor_j",
vector<int>{1, 1, 1})),
ranks(this->template GetRepeatedArgument<int>(
"ranks",
vector<int>{1, 1, 1, 1})),
emb_size(this->template GetSingleArgument<int>("emb_size", 64)) {
// cumprod of i, used for index slice
l_cumprod.push_back(1);
for (const auto i : c10::irange(1, factor_i.size())) {
l_cumprod.push_back(l_cumprod[i - 1] * factor_i[i - 1]);
}
}
~TTSparseLengthsSumOp() {}
void Ind2Sub(int64_t* out_factor_index, const int64_t* indices, int len) {
// TODO: vectorization
auto N = factor_i.size();
for (const auto j : c10::irange(len)) {
auto idx = indices[j];
for (int i = N; i > 0; i--) {
out_factor_index[j * N + i - 1] = idx / l_cumprod[i - 1];
idx = idx % l_cumprod[i - 1];
}
}
}
bool GetSlice(
std::vector<std::vector<T>>& tgt_slice,
const T* core,
const vector<int64_t>& ind_slice,
int bs,
int idx) {
// implement the functinality index_select(core, 1, ind_slice)
auto num_of_elements = ranks[idx] * factor_j[idx] * ranks[idx + 1];
for (const auto i : c10::irange(bs)) {
memcpy(
tgt_slice[i].data(),
core + ind_slice[i] * num_of_elements,
num_of_elements * sizeof(T));
}
return true;
}
// ind: it stores the index to each tensor core
// bs: the number of indices
// GatherAllRows uses two steps to calculate the lengthsum functionality: 1) it uses tensor train
// to calculate the embedding for each index. 2) it sums the embedding for each bag.
// In Step 1), it batches all the indices together. Specifically, for every index, it uses the pre-computed
// ind of each tensor core to extract the corresponding slice of the core. Then it does gemm operation
// sequentially on the slices to produce the embedding result for each index.
// In Step 2), it takes the embedding computed in step 1) and apply the sum operation for each bag.
bool GatherAllRows(
int64_t* ind,
int bs,
int x_len,
vector<const T*> cores,
int segments,
const int* lengths,
T* out_data) {
// compute the largest memory consumption of intermediate result
// TODO: dynamic allocation size: cur_rows*factor_j[i]*ranks[i+1]
// and also explore the contiguous memory storage for res and int_res
int max_rank = *max_element(ranks.begin(), ranks.end());
std::vector<std::vector<T>> res(bs, std::vector<T>(emb_size * max_rank, 0));
std::vector<std::vector<T>> int_res(
bs, std::vector<T>(emb_size * max_rank, 0));
// Store the matrix A
vector<T*> Y_ptr(bs);
// Store the intermediate result in each layer
vector<T*> Z_ptr(bs);
for (const auto b : c10::irange(bs)) {
Y_ptr[b] = res[b].data();
Z_ptr[b] = int_res[b].data();
}
vector<int64_t> ind_slice(bs);
int rows = 0;
for (const auto i : c10::irange(x_len)) {
// slice cur
for (const auto j : c10::irange(bs)) {
ind_slice[j] = ind[x_len * j + i];
}
if (i == 0) {
GetSlice(res, cores[i], ind_slice, bs, i);
rows = factor_j[0];
} else {
std::vector<std::vector<T>> slice(
bs, std::vector<T>(ranks[i] * factor_j[i] * ranks[i + 1], 0));
vector<const T*> X_ptr(bs);
for (const auto b : c10::irange(bs)) {
X_ptr[b] = slice[b].data();
}
GetSlice(slice, cores[i], ind_slice, bs, i);
math::GemmBatched<T, CPUContext>(
CblasNoTrans,
CblasNoTrans,
bs,
rows,
factor_j[i] * ranks[i + 1],
ranks[i],
1.0f,
const_cast<const T**>(Y_ptr.data()),
X_ptr.data(),
0.0f,
Z_ptr.data(),
&context_);
for (const auto b : c10::irange(bs)) {
std::memcpy(Y_ptr[b], Z_ptr[b], (emb_size * max_rank) * sizeof(T));
}
rows *= factor_j[i];
}
// save the intermediate output for backward path
// shape for the core
auto shape = vector<int64_t>({bs, rows, ranks[i + 1]});
if (i < 2) {
auto* core_data = Output(i + 1, shape, at::dtype<T>());
T* out_core = core_data->template mutable_data<T>();
for (const auto b : c10::irange(bs)) {
std::memcpy(
out_core + b * rows * ranks[i + 1],
Y_ptr[b],
rows * ranks[i + 1] * sizeof(T));
}
}
}
// reduction and store back to output
vector<int64_t> cum_lengths(segments);
for (const auto seg : c10::irange(segments)) {
cum_lengths[seg] =
seg == 0 ? lengths[0] : lengths[seg] + cum_lengths[seg - 1];
}
int length_idx = 0;
vector<T> tmp_sum(emb_size, 0.0f);
for (int i = 0; i <= bs; i++) {
while ((length_idx < segments) && (i == cum_lengths[length_idx])) {
// store the tmp_sum into output
memcpy(
&out_data[length_idx * emb_size],
tmp_sum.data(),
emb_size * sizeof(T));
length_idx++;
fill(tmp_sum.begin(), tmp_sum.end(), 0.0f);
}
if (i == bs) {
break;
}
transform(
res[i].begin(),
res[i].begin() + emb_size,
tmp_sum.begin(),
tmp_sum.begin(),
std::plus<T>());
}
return true;
}
bool RunOnDevice() override {
const auto& dataInput0 = Input(0);
const auto& dataInput1 = Input(1);
const auto& dataInput2 = Input(2);
const auto& indicesInput = Input(3);
const auto& lengthsInput = Input(4);
CAFFE_ENFORCE_EQ(1, indicesInput.dim(), "INDICES must be a vector");
CAFFE_ENFORCE_EQ(1, lengthsInput.dim(), "LENGTHS must be a vector");
int N = factor_i.size();
const int64_t M = lengthsInput.size(0);
auto shape = vector<int64_t>({M, emb_size});
auto* output = Output(0, shape, at::dtype<T>());
T* out_data = output->template mutable_data<T>();
const T* core0 = dataInput0.template data<T>();
const T* core1 = dataInput1.template data<T>();
const T* core2 = dataInput2.template data<T>();
const int* lengths = lengthsInput.template data<int>();
vector<const T*> cores = {core0, core1, core2};
const int64_t* indices = indicesInput.template data<int64_t>();
// Store the factor index for backward path
auto index_shape = vector<int64_t>({indicesInput.size(), N});
auto* index_data = Output(3, index_shape, at::dtype<int64_t>());
int64_t* out_factor_index = index_data->template mutable_data<int64_t>();
// Store the factorized index for each core
Ind2Sub(out_factor_index, indices, indicesInput.size());
return GatherAllRows(
out_factor_index, indicesInput.size(), N, cores, M, lengths, out_data);
}
protected:
vector<int> factor_i;
vector<int> factor_j;
vector<int> ranks;
vector<int> l_cumprod;
int emb_size;
};
template <typename T, class Context>
class TTSparseLengthsSumGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit TTSparseLengthsSumGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() override;
~TTSparseLengthsSumGradientOp() {}
};
// implement the graident op for TTLengthSumGradient op
template <typename T, class Context>
bool TTSparseLengthsSumGradientOp<T, Context>::RunOnDevice() {
const auto& core0 = Input(0);
const auto& core1 = Input(1);
const auto& core2 = Input(2);
const auto& lengths = Input(3);
const auto& core0_out = Input(4);
const auto& core1_out = Input(5);
const auto& index_out = Input(6);
const auto& dY = Input(7);
const int* lengths_data = lengths.template data<int>();
const T* dY_data = dY.template data<T>();
// restore the arguments from shape
const int64_t bs = index_out.size(0);
const int64_t emb_size = dY.size(1);
const int64_t num_segments = lengths.size(0);
auto core0_shape = core0.sizes().vec();
auto core1_shape = core1.sizes().vec();
auto core2_shape = core2.sizes().vec();
auto core0_out_shape = core0_out.sizes().vec();
auto core1_out_shape = core1_out.sizes().vec();
auto* dCore0 = Output(0, core0_shape, at::dtype<T>());
auto* dCore1 = Output(1, core1_shape, at::dtype<T>());
auto* dCore2 = Output(2, core2_shape, at::dtype<T>());
T* dCore0_data = dCore0->template mutable_data<T>();
T* dCore1_data = dCore1->template mutable_data<T>();
T* dCore2_data = dCore2->template mutable_data<T>();
memset(
dCore0_data,
0.0f,
sizeof(T) *
accumulate(
core0_shape.begin(), core0_shape.end(), 1, std::multiplies<T>()));
memset(
dCore1_data,
0.0f,
sizeof(T) *
accumulate(
core1_shape.begin(), core1_shape.end(), 1, std::multiplies<T>()));
memset(
dCore2_data,
0.0f,
sizeof(T) *
accumulate(
core2_shape.begin(), core2_shape.end(), 1, std::multiplies<T>()));
int64_t* index_out_data = index_out.template mutable_data<int64_t>();
vector<vector<int64_t>> index_slice(bs, vector<int64_t>(3, 0));
for (const auto b : c10::irange(bs)) {
memcpy(index_slice[b].data(), index_out_data + b * 3, 3 * sizeof(int64_t));
}
vector<const T*> A_ptr(bs);
vector<T*> B_ptr(bs);
vector<T*> C_ptr(bs);
// size of each batch
int64_t num_of_elements = 0;
// construct the ranks
// expand the gradient into all indices
vector<vector<T>> core2_out_grad(bs, vector<T>(emb_size, 0));
int64_t data_index = 0;
for (const auto range_index : c10::irange(num_segments)) {
for (int64_t start = data_index;
data_index < start + lengths_data[range_index];
++data_index) {
memcpy(
core2_out_grad[data_index].data(),
dY_data + range_index * emb_size,
emb_size * sizeof(T));
}
}
// =======================================================
// Calculate dCore2_data:
// 1) Transpose core1_out and multiply iwth core2_out_grad
// 2) add to dCore2_data
vector<vector<T>> dCore2_data_slice_grad(
bs, vector<T>(core2_shape[1] * core2_shape[2] * core2_shape[3], 0));
const T* core1_out_data = core1_out.template data<T>();
// const T* core1_out_p[bs];
for (const auto b : c10::irange(bs)) {
A_ptr[b] = core1_out_data + b * core1_out.size(1) * core1_out.size(2);
B_ptr[b] = core2_out_grad[b].data();
C_ptr[b] = dCore2_data_slice_grad[b].data();
}
math::GemmBatched<T, CPUContext>(
CblasTrans,
CblasNoTrans,
bs,
core2.size(1), // M
core2.size(2) * core2.size(3), // N
core1_out.size(1), // K
1.0f,
const_cast<const T**>(A_ptr.data()),
const_cast<const T**>(B_ptr.data()),
0.0f,
C_ptr.data(),
&context_);
// update the corresponding slice
num_of_elements = core2_shape[1] * core2_shape[2] * core2_shape[3];
T* core2_data = core2.template mutable_data<T>();
vector<vector<T>> core2_slice(
bs, vector<T>(core2_shape[1] * core2_shape[2] * core2_shape[3], 0));
for (const auto b : c10::irange(bs)) {
for (const auto i : c10::irange(num_of_elements)) {
dCore2_data[index_slice[b][2] * num_of_elements + i] += C_ptr[b][i];
}
memcpy(
core2_slice[b].data(),
core2_data + index_slice[b][2] * num_of_elements,
sizeof(T) * num_of_elements);
}
// Calculate core1_out_grad
vector<vector<T>> core1_out_grad(
bs, vector<T>(core1_out_shape[1] * core1_out_shape[2], 0));
for (const auto b : c10::irange(bs)) {
A_ptr[b] = core2_out_grad[b].data();
B_ptr[b] = core2_slice[b].data();
C_ptr[b] = core1_out_grad[b].data();
}
math::GemmBatched<T, CPUContext>(
CblasNoTrans,
CblasTrans,
bs,
core1_out.size(1), // M
core2_shape[1], // N
core2_shape[2] * core2_shape[3], // K
1.0f,
const_cast<const T**>(A_ptr.data()),
const_cast<const T**>(B_ptr.data()),
0.0f,
C_ptr.data(),
&context_);
// =======================================================
// Calcuate dCore1_data:
// 1) Transpose core1_out_grad and multiply with core0_out
// 2) Transpose the result and then add to dCore1_data
vector<vector<T>> dCore1_data_slice_grad(
bs, vector<T>(core1_shape[1] * core1_shape[2] * core1_shape[3], 0));
const T* core0_out_data = core0_out.template data<T>();
for (const auto b : c10::irange(bs)) {
A_ptr[b] = core0_out_data + b * core0_out.size(1) * core0_out.size(2);
B_ptr[b] = core1_out_grad[b].data();
C_ptr[b] = dCore1_data_slice_grad[b].data();
}
math::GemmBatched<T, CPUContext>(
CblasTrans,
CblasNoTrans,
bs,
core1.size(1), // M
core1.size(2) * core1.size(3), // N
core0_out.size(1), // K
1.0f,
const_cast<const T**>(A_ptr.data()),
const_cast<const T**>(B_ptr.data()),
0.0f,
C_ptr.data(),
&context_);
// update the corresponding slice
num_of_elements = core1_shape[1] * core1_shape[2] * core1_shape[3];
T* core1_data = core1.template mutable_data<T>();
vector<vector<T>> core1_slice(
bs, vector<T>(core1_shape[1] * core1_shape[2] * core1_shape[3], 0));
for (const auto b : c10::irange(bs)) {
for (const auto i : c10::irange(num_of_elements)) {
dCore1_data[index_slice[b][1] * num_of_elements + i] += C_ptr[b][i];
}
memcpy(
core1_slice[b].data(),
core1_data + index_slice[b][1] * num_of_elements,
sizeof(T) * num_of_elements);
}
// Calcuate core0_out_grad
vector<vector<T>> core0_out_grad(
bs, vector<T>(core0_out_shape[1] * core0_out_shape[2], 0));
for (const auto b : c10::irange(bs)) {
A_ptr[b] = core1_out_grad[b].data();
B_ptr[b] = core1_slice[b].data();
C_ptr[b] = core0_out_grad[b].data();
}
math::GemmBatched<T, CPUContext>(
CblasNoTrans,
CblasTrans,
bs,
core0_out.size(1), // M
core1_shape[1], // N
core1_shape[2] * core1_shape[3], // K
1.0f,
const_cast<const T**>(A_ptr.data()),
const_cast<const T**>(B_ptr.data()),
0.0f,
C_ptr.data(),
&context_);
num_of_elements = core0_shape[1] * core0_shape[2] * core0_shape[3];
for (const auto b : c10::irange(bs)) {
for (const auto i : c10::irange(num_of_elements)) {
dCore0_data[index_slice[b][0] * num_of_elements + i] += C_ptr[b][i];
}
}
return true;
}
} // namespace caffe2
|