1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
#ifndef CAFFE2_OPERATORS_LENGTHS_REDUCER_ROWWISE_8bits_OP_H_
#define CAFFE2_OPERATORS_LENGTHS_REDUCER_ROWWISE_8bits_OP_H_
// SparseLengthsSum8bits
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/reducer_functors.h"
#include "caffe2/perfkernels/embedding_lookup.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
const float kEqualityThreshold = 1e-10f;
}
template <
class Context,
bool USE_WEIGHTS = 0,
bool USE_MEAN = 0,
class OutDataT = float>
class SparseLengths8BitsRowwiseOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(SparseLengths8BitsRowwiseOp);
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(INDICES));
}
template <typename IndexType>
bool DoRunWithType() {
auto& dataInput = Input(DATA);
auto& lengthsInput = Input(LENGTHS);
auto* scale_bias = Input(SCALE_BIAS).template data<float>();
CAFFE_ENFORCE_EQ(1, lengthsInput.dim(), "LENGTHS must be a vector");
const int64_t outputSize = lengthsInput.size(0);
auto& indicesInput = Input(INDICES);
CAFFE_ENFORCE_EQ(2, Input(SCALE_BIAS).dim(), "scale_bias has to be matrix");
CAFFE_ENFORCE_EQ(
dataInput.size(0),
Input(SCALE_BIAS).size(0),
"scale_bias must have the same first dim as data");
CAFFE_ENFORCE_EQ(
2,
Input(SCALE_BIAS).size(1),
"the second dim of scale_bias has to be equal to 2");
CAFFE_ENFORCE_EQ(1, indicesInput.dim(), "INDICES must be a vector");
const IndexType* indices = indicesInput.template data<IndexType>();
const int* lengths = lengthsInput.template data<int>();
vector<int64_t> shape = dataInput.sizes().vec();
shape[0] = outputSize;
auto* output = Output(0, shape, at::dtype<OutDataT>());
const float* w = nullptr;
if (USE_WEIGHTS) {
w = Input(WEIGHTS).template data<float>();
}
int64_t in_block_size = dataInput.size_from_dim(1);
OutDataT* out = output->template mutable_data<OutDataT>();
const uint8_t* input_data = dataInput.template data<uint8_t>();
// delegate work to perfkernel that branches based on architecture
const int64_t indices_size = indicesInput.numel();
const int64_t N = dataInput.size(0);
EmbeddingLookup(
in_block_size,
outputSize,
indices_size,
N, // embedding table length
input_data,
indices,
lengths,
w,
scale_bias,
USE_MEAN,
out);
return true;
}
enum {
DATA = 0,
WEIGHTS = 1,
INDICES = 1 + USE_WEIGHTS,
LENGTHS = 2 + USE_WEIGHTS,
SCALE_BIAS = 3 + USE_WEIGHTS
};
};
template <class Context>
class FloatToRowwiseQuantized8BitsOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(FloatToRowwiseQuantized8BitsOp);
bool RunOnDevice() override {
auto& input = Input(DATA_FLOAT);
auto* input_data = input.template data<float>();
auto* output = Output(DATA_UINT8, input.sizes(), at::dtype<uint8_t>());
vector<int64_t> scale_bias_dims = {input.size(0), 2};
auto* scale_bias = Output(SCALE_BIAS, scale_bias_dims, at::dtype<float>());
auto* output_data = output->template mutable_data<uint8_t>();
float* scale_bias_data = scale_bias->template mutable_data<float>();
size_t n_blocks = input.size(0);
size_t block_size = input.size_from_dim(1);
for (const auto i : c10::irange(n_blocks)) {
ConstEigenVectorArrayMap<float> input_row(
input_data + i * block_size, block_size);
EigenVectorArrayMap<uint8_t> output_row(
output_data + i * block_size, block_size);
auto min_element = input_row.minCoeff();
auto max_element = input_row.maxCoeff();
if (max_element - min_element < kEqualityThreshold) {
scale_bias_data[2 * i] = 1.0f;
scale_bias_data[2 * i + 1] = min_element;
memset(output_data + i * block_size, 0, block_size);
} else {
scale_bias_data[2 * i] = (max_element - min_element) / 255.0f;
scale_bias_data[2 * i + 1] = min_element;
const float inv_scale = 1.0f / scale_bias_data[2 * i];
output_row = ((input_row - scale_bias_data[2 * i + 1]) * inv_scale)
.round()
.template cast<uint8_t>();
}
}
return true;
}
private:
INPUT_TAGS(DATA_FLOAT);
OUTPUT_TAGS(DATA_UINT8, SCALE_BIAS);
};
template <class Context>
class Rowwise8BitQuantizedToFloatOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(Rowwise8BitQuantizedToFloatOp);
bool RunOnDevice() override {
auto& input = Input(DATA_UINT8);
auto& scale_bias = Input(SCALE_BIAS);
CAFFE_ENFORCE_EQ(2, scale_bias.dim(), "scale_bias has to be matrix");
CAFFE_ENFORCE_EQ(
input.size(0),
scale_bias.size(0),
"scale_bias must have the same first dim as data");
CAFFE_ENFORCE_EQ(
2,
scale_bias.size(1),
"the second dim of scale_bias has to be equal to 2");
auto* output = Output(DATA_FLOAT, input.sizes(), at::dtype<float>());
auto* input_data = input.template data<uint8_t>();
auto* scale_bias_data = scale_bias.template data<float>();
auto* output_data = output->template mutable_data<float>();
size_t block_size = input.size_from_dim(1);
size_t n_blocks = input.size(0);
for (const auto i : c10::irange(n_blocks)) {
ConstEigenVectorArrayMap<uint8_t> input_row(
input_data + i * block_size, block_size);
EigenVectorArrayMap<float> output_row(
output_data + i * block_size, block_size);
output_row = input_row.template cast<float>() * scale_bias_data[2 * i] +
scale_bias_data[2 * i + 1];
}
return true;
}
private:
INPUT_TAGS(DATA_UINT8, SCALE_BIAS);
OUTPUT_TAGS(DATA_FLOAT);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_LENGTHS_REDUCER_ROWWISE_8bits_H_
|