1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#include "caffe2/operators/listwise_l2r_op.h"
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
namespace {
// Returns the indices that would sort an array. For example:
// data = [3, 1, 2, 4]
// return = [1, 2, 0, 3] (reverse = false)
// return = [3, 0, 2, 1] (reverse = true)
template <typename TDATA, typename TIDX>
void arg_sort(const TDATA* data, TIDX* idx, const size_t N, bool reverse) {
std::function<bool(size_t, size_t)> cmp_lambda;
if (reverse) {
cmp_lambda = [data](size_t i, size_t j) { return data[i] > data[j]; };
} else {
cmp_lambda = [data](size_t i, size_t j) { return data[i] < data[j]; };
}
size_t n = 0;
std::generate(idx, idx + N, [&n] { return n++; });
std::sort(idx, idx + N, cmp_lambda);
}
#define PAIRWISE_DIFF(vec, N) \
((vec.matrix() * Eigen::MatrixXf::Ones(1, N) - \
Eigen::MatrixXf::Ones(N, 1) * vec.matrix().transpose()) \
.array())
#define CWISE_SIGM(vec) (1. / (1. + (-(vec)).exp()))
#define CWISE_GT(vec1, vec2) ((vec1) > (vec2))
#define CWISE_LT(vec1, vec2) ((vec1) < (vec2))
#define CWISE_SIGN(vec) (CWISE_GT((vec), 0).cast<float>() * 2. - 1.)
#define CWISE_LOG_SIGM(vec, huge) \
(CWISE_GT((vec), (huge)) \
.select( \
0, CWISE_LT((vec), -(huge)).select(vec, CWISE_SIGM((vec)).log())))
} // namespace
template <>
void LambdaRankNdcgOp<float, CPUContext>::ResizeInvLogITensor(int size) {
int old_size = inv_log_i_.numel();
int new_size = std::max(old_size, 1);
while (new_size < size) {
new_size <<= 1;
}
if (new_size != old_size) {
ReinitializeTensor(&inv_log_i_, {new_size}, at::dtype<float>().device(CPU));
auto* data = inv_log_i_.template mutable_data<float>();
EigenVectorArrayMap<float> vec(data, inv_log_i_.numel());
const float log2f_ = std::log(2.f);
vec = log2f_ *
(Eigen::ArrayXf::LinSpaced(new_size, 2, 1 + new_size).log().inverse());
}
return;
}
template <>
void LambdaRankNdcgOp<float, CPUContext>::ComputeDiscounts(int* idx, int N) {
ReinitializeTensor(&discount_, {N}, at::dtype<float>().device(CPU));
auto* discount_data = discount_.template mutable_data<float>();
auto* inv_log_i_data = inv_log_i_.template mutable_data<float>();
for (int i = 0; i < N; i++) {
discount_data[idx[i]] = inv_log_i_data[i];
}
return;
}
template <>
float LambdaRankNdcgOp<float, CPUContext>::LambdaRankNdcgSession(
int start_index,
int end_index,
const Tensor& y,
const Tensor& r,
Tensor** dy) {
CAFFE_ENFORCE(start_index >= 0);
CAFFE_ENFORCE(start_index < y.numel());
const auto* y_data = y.template data<float>();
const auto* r_data = r.template data<float>();
int N = end_index - start_index + 1;
ConstEigenVectorArrayMap<float> y_vec(&y_data[start_index], N);
ConstEigenVectorArrayMap<float> r_vec(&r_data[start_index], N);
if (N <= 0) {
return 0;
}
ReinitializeTensor(&ideal_idx_, {N}, at::dtype<int>().device(CPU));
ReinitializeTensor(&rank_idx_, {N}, at::dtype<int>().device(CPU));
auto* rank_idx_data = rank_idx_.template mutable_data<int>();
auto* ideal_idx_data = ideal_idx_.template mutable_data<int>();
// current ranked list is obtained by sorting by current score
arg_sort(&y_data[start_index], rank_idx_data, N, true);
// ideal ranked list is same as sorting by label
arg_sort(&r_data[start_index], ideal_idx_data, N, true);
auto* dy_data = (*dy)->template mutable_data<float>();
EigenVectorArrayMap<float> dy_vec(&dy_data[start_index], N);
float loss = 0;
dy_vec = 0;
// in case that all docs in a session have zero ratings, no op
if (r_vec.abs().sum() < 1e-6) {
return 0;
}
const double log2f_ = std::log(2.f);
ReinitializeTensor(&gain_, {N}, at::dtype<float>().device(CPU));
auto* gain_data = gain_.template mutable_data<float>();
EigenVectorArrayMap<float> gain_vec(gain_data, gain_.numel());
if (use_ndcg_as_loss_ && !use_exp_gain_) {
gain_vec = r_vec;
} else {
// Gain vector = 2^rel = exp{rel * log(2)}
gain_vec = (r_vec * log2f_).exp();
}
ResizeInvLogITensor(N);
ComputeDiscounts(ideal_idx_data, N);
auto* ideal_discount_data = discount_.template mutable_data<float>();
EigenVectorArrayMap<float> ideal_discount_vec(
ideal_discount_data, discount_.numel());
// ideal dcg = \sum gain_i * ideal_discount_i
double idcg = (gain_vec * ideal_discount_vec).sum();
ComputeDiscounts(rank_idx_data, N);
auto* discount_data = discount_.template mutable_data<float>();
EigenVectorArrayMap<float> discount_vec(discount_data, discount_.numel());
// similar to ideal but replace with actual discounts
double dcg = (gain_vec * discount_vec).sum();
ReinitializeTensor(&lambda_, {N * N}, at::dtype<float>().device(CPU));
auto* lambda_data = lambda_.template mutable_data<float>();
EigenArrayMap<float> lambda_mat(lambda_data, N, N);
// computes lambda weight (i, j) = abs(gain_dff * discount_diff)
lambda_mat =
(PAIRWISE_DIFF(discount_vec, N) * PAIRWISE_DIFF(gain_vec, N)).abs();
// dy_i =
// \sum_j lambda_{i, j} -sign(i > j) * sigm( -sign(i > j)*(yi - yj) )
// |++ gradient of rank loss between i & j ++|
dy_vec =
-(lambda_mat * CWISE_SIGN(PAIRWISE_DIFF(r_vec, N)) *
CWISE_SIGM(
-CWISE_SIGN(PAIRWISE_DIFF(r_vec, N)) * PAIRWISE_DIFF(y_vec, N)))
.rowwise()
.sum();
if (use_ndcg_as_loss_) {
// DCG loss function
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
loss = (idcg - dcg);
} else {
loss = -(lambda_mat *
CWISE_LOG_SIGM(
CWISE_SIGN(PAIRWISE_DIFF(r_vec, N)) * PAIRWISE_DIFF(y_vec, N),
100))
.sum();
}
// if use_idcg_normalization_ is true, the loss function is normalized by idcg
// (e.g. NDCG), else un-normalized loss function (e.g. DCG)
// Note that normalization is mathematically correct if idcg is guaranteed to
// be positive!
if (use_idcg_normalization_) {
dy_vec /= std::max(idcg, 1e-5);
loss /= std::max(idcg, 1e-5);
}
return loss;
}
template <>
bool LambdaRankNdcgOp<float, CPUContext>::RunOnDevice() {
auto& y = Input(PRED);
auto& r = Input(REL);
auto& sid = Input(SESSION_LENS);
auto* dy = Output(DPRED);
const auto* session_lengths = sid.template data<int>();
CAFFE_ENFORCE(y.dim() == 1);
CAFFE_ENFORCE(y.numel() == r.numel());
dy->Resize(y.numel());
auto* loss = Output(LOSS, {sid.numel()}, at::dtype<float>());
auto loss_vec = loss->template mutable_data<float>();
int start_id = 0;
for (int i = 0; i < sid.numel(); i++) {
loss_vec[i] = LambdaRankNdcgSession(
start_id, session_lengths[i] + start_id - 1, y, r, &dy);
start_id += session_lengths[i];
}
return true;
}
template <>
bool LambdaRankNdcgGradientOp<float, CPUContext>::RunOnDevice() {
auto& y = Input(Y);
auto& sids = Input(SESSION_LENS);
auto& dy_cache = Input(DY_CACHE);
auto& dLoss = Input(DLOSS);
CAFFE_ENFORCE(y.dim() == 1);
CAFFE_ENFORCE(dy_cache.dim() == 1);
CAFFE_ENFORCE(dy_cache.numel() > 0);
CAFFE_ENFORCE(y.numel() == dy_cache.numel());
const auto* session_lengths = sids.template data<int>();
CAFFE_ENFORCE(dLoss.numel() == sids.numel());
ConstEigenVectorArrayMap<float> dy_cache_vec(
dy_cache.template data<float>(), dy_cache.numel());
auto* dy = Output(DY, {dy_cache.numel()}, at::dtype<float>());
EigenVectorArrayMap<float> dy_vec(
dy->template mutable_data<float>(), dy->numel());
auto multiplier = dLoss.template data<float>();
int count = 0;
for (int j = 0; j < sids.numel(); j++) {
dy_vec.segment(count, session_lengths[j]) =
multiplier[j] * dy_cache_vec.segment(count, session_lengths[j]);
count += session_lengths[j];
}
return true;
}
namespace {
REGISTER_CPU_OPERATOR(LambdaRankNdcg, LambdaRankNdcgOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
LambdaRankNdcgGradient,
LambdaRankNdcgGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(LambdaRankNdcg).NumInputs(3).NumOutputs(2).SetDoc(R"DOC(
It implements the LambdaRank as appeared in Wu, Qiang, et al. "Adapting boosting
for information retrieval measures." Information Retrieval 13.3 (2010): 254-270.
This method heuristically optimizes the NDCG.
)DOC");
OPERATOR_SCHEMA(LambdaRankNdcgGradient).NumInputs(4).NumOutputs(1);
class GetLambdaRankNdcgGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"LambdaRankNdcgGradient",
"",
vector<string>{I(0), I(2), O(1), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(LambdaRankNdcg, GetLambdaRankNdcgGradient);
} // namespace
} // namespace caffe2
|