1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#include "caffe2/operators/load_save_op_util.h"
namespace caffe2 {
namespace load_save_op_util {
std::string buildBlobNameFromDbKey(
const std::string& dbKey,
const std::string& strip_prefix,
const std::string& add_prefix) {
std::string key = dbKey.substr(0, dbKey.find(kChunkIdSeparator));
if (!strip_prefix.empty()) {
auto match_pos = key.find(strip_prefix);
if (match_pos != std::string::npos) {
key = key.substr(match_pos + strip_prefix.size());
}
}
key = add_prefix + key;
return key;
}
void ProcessBlob(
Blob* blob,
const BlobProto& proto,
std::unordered_map<std::string, BlobState>* blob_states_ptr,
const std::string& key,
int* loaded_blobs) {
prepareBlob(blob, blob_states_ptr, key);
DeserializeBlob(proto, blob);
updateBlobStates(proto, blob_states_ptr, key, loaded_blobs);
}
void prepareBlob(
Blob* blob,
std::unordered_map<std::string, BlobState>* blob_states,
const std::string& key) {
if (blob_states->count(key) == 0) {
// We reset the blob so that any existing content is destroyed. This
// is to guarantee correct device placement: if we are deserializing
// into a TensorCUDA, without explicit Reset we might be loading data
// into an existing TensorCUDA that has pre-allocated memory on a
// different GPU.
blob->Reset();
}
}
void updateBlobStates(
const BlobProto& proto,
std::unordered_map<std::string, BlobState>* blob_states_ptr,
const std::string& key,
int* loaded_blobs) {
auto& blob_states = *blob_states_ptr;
if (proto.has_content_num_chunks()) {
if (!blob_states.count(key)) {
blob_states[key] = BlobState(proto.content_num_chunks());
}
CAFFE_ENFORCE(
blob_states[key]
.seen_chunks_ids.insert(proto.content_chunk_id())
.second,
"Chunk with the same id has occurred twice for: ",
key);
CAFFE_ENFORCE(
proto.content_chunk_id() >= 0 &&
proto.content_chunk_id() < blob_states[key].total_size,
"Chunk id has to be not less than 0 and "
"less than content_num_chunks for key: ",
key);
blob_states[key].current_size++;
CAFFE_ENFORCE(
!blob_states[key].is_tensor,
"Proto with content_chunks can not store tensor: ",
key);
CAFFE_ENFORCE(
blob_states[key].current_size <= blob_states[key].total_size,
"Found an extra part for an already filled blob: ",
key);
if (blob_states[key].current_size == blob_states[key].total_size) {
(*loaded_blobs)++;
}
return;
}
if (!proto.has_tensor()) {
// If blob is divided into chunks the field content_chunks has to be set,
// otherwise only tensors can be seen multiple times as chunks.
CAFFE_ENFORCE(blob_states.count(key) == 0, "Blob duplicated: ", key);
blob_states[key] = BlobState();
(*loaded_blobs)++;
return;
}
CAFFE_ENFORCE(proto.has_tensor());
if (blob_states.count(key)) {
CAFFE_ENFORCE(blob_states[key].is_tensor, "Must be tensor ", key);
CAFFE_ENFORCE(
blob_states[key].current_size < blob_states[key].total_size,
"Found an extra part for an already filled tensor: ",
key);
CAFFE_ENFORCE(
proto.tensor().has_segment(),
"Partial tensor must have a segment: ",
key);
blob_states[key].current_size +=
proto.tensor().segment().end() - proto.tensor().segment().begin();
CAFFE_ENFORCE(
blob_states[key].current_size <= blob_states[key].total_size,
"Tensor parts are bigger than target size for tensor: ",
key);
} else {
const auto& dims = proto.tensor().dims();
int64_t total_size = 1;
for (const auto& dim : dims) {
total_size *= dim;
}
auto current_size = total_size;
if (proto.tensor().has_segment()) {
current_size =
proto.tensor().segment().end() - proto.tensor().segment().begin();
}
blob_states[key] =
BlobState(total_size, current_size, true /* is_tensor */);
}
if (blob_states[key].current_size == blob_states[key].total_size) {
(*loaded_blobs)++;
}
}
void validateBlobStates(
const std::unordered_map<std::string, BlobState>& blob_states) {
for (const auto& iter : blob_states) {
const BlobState& blob_state = iter.second;
CAFFE_ENFORCE(
blob_state.current_size == blob_state.total_size,
"Data size mismatch for blob ",
iter.first,
". Expected: ",
blob_state.total_size,
" Read: ",
blob_state.current_size);
}
}
} // namespace load_save_op_util
} // namespace caffe2
|