1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/local_response_normalization_op.h"
namespace caffe2 {
namespace {
template <typename T>
__global__ void LRNFillScaleNCHW(const int nthreads, const T* in,
const int channels, const int height,
const int width, const int size, const T alpha_over_size,
const T bias, T* scale) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// find out the local offset
const int w = index % width;
const int h = (index / width) % height;
const int n = index / width / height;
const int offset = (n * channels * height + h) * width + w;
const int step = height * width;
in += offset;
scale += offset;
int head = 0;
const int pre_pad = (size - 1) / 2;
const int post_pad = size - pre_pad - 1;
T accum_scale = 0;
// fill the scale at [n, :, h, w]
// accumulate values
while (head < post_pad) {
accum_scale += in[head * step] * in[head * step];
++head;
}
// until we reach size, nothing needs to be subtracted
while (head < size) {
accum_scale += in[head * step] * in[head * step];
scale[(head - post_pad) * step] = bias + accum_scale * alpha_over_size;
++head;
}
// both add and subtract
while (head < channels) {
accum_scale += in[head * step] * in[head * step];
accum_scale -= in[(head - size) * step] * in[(head - size) * step];
scale[(head - post_pad) * step] = bias + accum_scale * alpha_over_size;
++head;
}
// subtract only
while (head < channels + post_pad) {
accum_scale -= in[(head - size) * step] * in[(head - size) * step];
scale[(head - post_pad) * step] = bias + accum_scale * alpha_over_size;
++head;
}
// recover the pointers for the next loop.
in -= offset;
scale -= offset;
}
}
template <typename T>
__global__ void LRNFillScaleNHWC(const int nthreads, const T *const in,
const int channels, const int size, const T alpha_over_size,
const T bias, T* scale) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
const int c = index % channels;
const int pre_pad = (size - 1) / 2;
scale[index] = 0;
for (int i = 0; i < size; ++i) {
const int raw_idx = c + i - pre_pad;
if (raw_idx >= 0 && raw_idx < channels) {
scale[index] += in[index + i - pre_pad] * in[index + i - pre_pad];
}
}
scale[index] = bias + scale[index] * alpha_over_size;
}
}
// TODO(Yangqing): check if it would be faster to just put it into the previous
// kernel.
template <typename T>
__global__ void LRNComputeOutput(const int nthreads, const T* in,
const T* scale, const T negative_beta, T* out) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
out[index] = in[index] * pow(scale[index], negative_beta);
}
}
template <typename T>
__global__ void LRNComputeDiffNCHW(const int nthreads, const T* bottom_data,
const T* top_data, const T* scale, const T* top_diff,
const int channels, const int height,
const int width, const int size, const T negative_beta,
const T cache_ratio,
T* bottom_diff) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// find out the local offset
const int w = index % width;
const int h = (index / width) % height;
const int n = index / width / height;
const int offset = (n * channels * height + h) * width + w;
const int step = height * width;
bottom_data += offset;
top_data += offset;
scale += offset;
top_diff += offset;
bottom_diff += offset;
int head = 0;
int pre_pad = size - (size + 1) / 2;
int post_pad = size - pre_pad - 1;
T accum_ratio = 0;
// accumulate values
while (head < post_pad) {
accum_ratio += top_diff[head * step] * top_data[head * step] /
scale[head * step];
++head;
}
// until we reach size, nothing needs to be subtracted
while (head < size) {
accum_ratio += top_diff[head * step] * top_data[head * step] /
scale[head * step];
bottom_diff[(head - post_pad) * step] = top_diff[(head - post_pad) * step]
* pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
bottom_data[(head - post_pad) * step] * accum_ratio;
++head;
}
// both add and subtract
while (head < channels) {
accum_ratio += top_diff[head * step] * top_data[head * step] /
scale[head * step];
accum_ratio -= top_diff[(head - size) * step] *
top_data[(head - size) * step] / scale[(head - size) * step];
bottom_diff[(head - post_pad) * step] = top_diff[(head - post_pad) * step]
* pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
bottom_data[(head - post_pad) * step] * accum_ratio;
++head;
}
// subtract only
while (head < channels + post_pad) {
accum_ratio -= top_diff[(head - size) * step] *
top_data[(head - size) * step] / scale[(head - size) * step];
bottom_diff[(head - post_pad) * step] = top_diff[(head - post_pad) * step]
* pow(scale[(head - post_pad) * step], negative_beta) - cache_ratio *
bottom_data[(head - post_pad) * step] * accum_ratio;
++head;
}
// recover pointer for next iteration.
bottom_data -= offset;
top_data -= offset;
scale -= offset;
top_diff -= offset;
bottom_diff -= offset;
}
}
// This local response normalization gradient does one sum per output location
// and does not use the running trick for 1-d convolution: thus it might not be
// the fastest implementation.
template <typename T>
__global__ void LRNComputeDiffNHWC(const int nthreads, const T* bottom_data,
const T* top_data, const T* scale, const T* top_diff,
const int channels, const int size, const T negative_beta, const T cache_ratio,
T* bottom_diff) {
CUDA_1D_KERNEL_LOOP(index, nthreads) {
// find out the local channel offset
const int c = index % channels;
const int pre_pad = size / 2;
T accum_ratio = 0;
for (int i = -pre_pad; i < size - pre_pad; ++i) {
if (c + i >= 0 && c + i < channels) {
accum_ratio += top_diff[index + i] * top_data[index + i] /
scale[index + i];
}
}
bottom_diff[index] = top_diff[index] * pow(scale[index], negative_beta) -
cache_ratio * bottom_data[index] * accum_ratio;
}
}
} // namespace
template<>
bool LRNOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0);
TORCH_DCHECK_EQ(X.dim(), 4);
const int N = X.dim32(0);
const int C = X.dim32(1);
const int H = X.dim32(2);
const int W = X.dim32(3);
const float* Xdata = X.data<float>();
auto* Y = Output(0, X.sizes(), at::dtype<float>());
float* Ydata = Y->template mutable_data<float>();
if (OutputSize() > 1) {
scale_ = Output(1);
} else {
if (!scale_) {
scale_ = &local_scale_tensor_;
}
}
scale_->ResizeLike(X);
float* scale_data = scale_->template mutable_data<float>();
int n_threads = N * H * W;
LRNFillScaleNCHW<float><<<CAFFE_GET_BLOCKS(n_threads), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, C, H, W, size_, alpha_ / size_, bias_, scale_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
n_threads = X.numel();
LRNComputeOutput<float><<<CAFFE_GET_BLOCKS(n_threads), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, scale_data, -beta_, Ydata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template<>
bool LRNOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0);
TORCH_DCHECK_EQ(X.dim(), 4);
const int N = X.dim32(0);
const int H = X.dim32(1);
const int W = X.dim32(2);
const int C = X.dim32(3);
const float* Xdata = X.data<float>();
auto* Y = Output(0, X.sizes(), at::dtype<float>());
float* Ydata = Y->template mutable_data<float>();
if (OutputSize() > 1) {
scale_ = Output(1);
} else {
if (!scale_) {
scale_ = &local_scale_tensor_;
}
}
scale_->ResizeLike(X);
float* scale_data = scale_->template mutable_data<float>();
int n_threads = X.numel();
LRNFillScaleNHWC<float><<<CAFFE_GET_BLOCKS(n_threads), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, C, size_, alpha_ / size_, bias_, scale_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
LRNComputeOutput<float><<<CAFFE_GET_BLOCKS(n_threads), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, scale_data, -beta_, Ydata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
bool LRNGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0);
auto& Y = Input(1);
auto& dY = Input(2);
TORCH_DCHECK_EQ(X.dim(), 4);
const int N = X.dim32(0);
const int C = X.dim32(1);
const int H = X.dim32(2);
const int W = X.dim32(3);
// Loosely checking the size, assuming that the shapes will be the same as
// long as the sizes check out.
TORCH_DCHECK_EQ(X.numel(), Y.numel());
TORCH_DCHECK_EQ(X.numel(), dY.numel());
auto* dX = Output(0, X.sizes(), at::dtype<float>());
const float* Xdata = X.data<float>();
const float* Ydata = Y.data<float>();
if (!scale_) {
scale_ = &local_scale_tensor_;
}
scale_->ResizeLike(X);
float *const scale_data = scale_->template mutable_data<float>();
const int n_threads = N * H * W;
LRNFillScaleNCHW<float><<<CAFFE_GET_BLOCKS(n_threads), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, C, H, W, size_, alpha_ / size_, bias_, scale_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
const float *const dYdata = dY.data<float>();
float *const dXdata = dX->template mutable_data<float>();
LRNComputeDiffNCHW<float><<<CAFFE_GET_BLOCKS(n_threads),
CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, Ydata, scale_data, dYdata, C, H, W, size_, -beta_,
2.f * alpha_ * beta_ / size_, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
bool LRNGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0);
auto& Y = Input(1);
auto& dY = Input(2);
TORCH_DCHECK_EQ(X.dim(), 4);
const int N = X.dim32(0);
const int H = X.dim32(1);
const int W = X.dim32(2);
const int C = X.dim32(3);
const float* Xdata = X.data<float>();
// Loosely checking the size, assuming that the shapes will be the same as
// long as the sizes check out.
TORCH_DCHECK_EQ(X.numel(), Y.numel());
TORCH_DCHECK_EQ(X.numel(), dY.numel());
auto* dX = Output(0, X.sizes(), at::dtype<float>());
if (!scale_) {
scale_ = &local_scale_tensor_;
}
scale_->ResizeLike(X);
float* scale_data = scale_->template mutable_data<float>();
int n_threads = X.numel();
LRNFillScaleNHWC<float><<<CAFFE_GET_BLOCKS(n_threads), CAFFE_CUDA_NUM_THREADS,
0, context_.cuda_stream()>>>(
n_threads, Xdata, C, size_, alpha_ / size_, bias_, scale_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
LRNComputeDiffNHWC<float>
<<<CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
X.numel(),
X.data<float>(),
Y.data<float>(),
scale_data,
dY.data<float>(),
X.dim32(3),
size_,
-beta_,
2.f * alpha_ * beta_ / size_,
dX->template mutable_data<float>());
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(LRN, LRNOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(LRNGradient, LRNGradientOp<float, CUDAContext>);
} // namespace caffe2
|