File: local_response_normalization_op_cudnn.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (217 lines) | stat: -rw-r--r-- 5,748 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"

namespace caffe2 {

class CuDNNLRNOp final : public Operator<CUDAContext> {
 public:
  USE_OPERATOR_FUNCTIONS(CUDAContext);

  template <class... Args>
  explicit CuDNNLRNOp(Args&&... args)
      : Operator<CUDAContext>(std::forward<Args>(args)...),
        cudnn_wrapper_(&context_),
        size_(OperatorBase::GetSingleArgument<int>("size", 0)),
        alpha_(OperatorBase::GetSingleArgument<float>("alpha", 0)),
        beta_(OperatorBase::GetSingleArgument<float>("beta", 0)),
        bias_(OperatorBase::GetSingleArgument<float>("bias", 1)) {
    CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&data_desc_));

    CUDNN_ENFORCE(cudnnCreateLRNDescriptor(&norm_desc_));
    CUDNN_ENFORCE(
        cudnnSetLRNDescriptor(norm_desc_, size_, alpha_, beta_, bias_));
  }

  ~CuDNNLRNOp() override {
    CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(cudnnDestroyLRNDescriptor(norm_desc_));
  }

  template <typename T, typename M>
  bool DoRunWithType();

  bool RunOnDevice() override;

 protected:
  CuDNNWrapper cudnn_wrapper_;
  cudnnTensorDescriptor_t data_desc_;
  cudnnLRNDescriptor_t norm_desc_;

  vector<int64_t> cudnn_input_dims_;

  const int size_;
  const float alpha_;
  const float beta_;
  const float bias_;

  // Input: X, Output: Y
};

class CuDNNLRNGradientOp final : public Operator<CUDAContext> {
 public:
  USE_OPERATOR_FUNCTIONS(CUDAContext);
  template <class... Args>
  explicit CuDNNLRNGradientOp(Args&&... args)
      : Operator<CUDAContext>(std::forward<Args>(args)...),
        cudnn_wrapper_(&context_),
        size_(OperatorBase::GetSingleArgument<int>("size", 0)),
        alpha_(OperatorBase::GetSingleArgument<float>("alpha", 0)),
        beta_(OperatorBase::GetSingleArgument<float>("beta", 0)),
        bias_(OperatorBase::GetSingleArgument<float>("bias", 1)) {
    CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&data_desc_));

    CUDNN_ENFORCE(cudnnCreateLRNDescriptor(&norm_desc_));
    CUDNN_ENFORCE(
        cudnnSetLRNDescriptor(norm_desc_, size_, alpha_, beta_, bias_));
  }

  ~CuDNNLRNGradientOp() override {
    CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(data_desc_));
    CUDNN_ENFORCE(cudnnDestroyLRNDescriptor(norm_desc_));
  }

  template <typename T, typename M>
  bool DoRunWithType();

  bool RunOnDevice() override;

 protected:
  CuDNNWrapper cudnn_wrapper_;
  cudnnTensorDescriptor_t data_desc_;
  cudnnLRNDescriptor_t norm_desc_;

  vector<int64_t> cudnn_input_dims_;

  const int size_;
  const float alpha_;
  const float beta_;
  const float bias_;

  // Input: X, Y, dY
  // Output: dX
};

template <typename T, typename M>
bool CuDNNLRNOp::DoRunWithType() {
  const auto& X = Input(0);
  auto* Y = Output(0);

  // Reshape tensor descriptors if necessary
  if (X.sizes() != cudnn_input_dims_) {
    VLOG(1) << "Setting descriptors";
    cudnn_input_dims_ = X.sizes().vec();
    int C = 1, H = 1, W = 1;
    // Normal 4-dimensional tensors for images.
    C = X.dim32(1);
    H = X.dim32(2);
    W = X.dim32(3);
    CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
        data_desc_,
        GetCudnnTensorFormat(StorageOrder::NCHW),
        cudnnTypeWrapper<T>::type,
        X.dim32(0),
        C,
        H,
        W));
  }

  // now actually run the computation
  CUDNN_ENFORCE(cudnnLRNCrossChannelForward(
      cudnn_wrapper_.inline_cudnn_handle(),
      norm_desc_,
      CUDNN_LRN_CROSS_CHANNEL_DIM1,
      cudnnTypeWrapper<T>::kOne(),
      data_desc_,
      X.template data<T>(),
      cudnnTypeWrapper<T>::kZero(),
      data_desc_,
      Y->template mutable_data<T>()));

  return true;
}

bool CuDNNLRNOp::RunOnDevice() {
  // dispatch based on contents of tensor(s)
  const auto& X = Input(0);
  auto* Y = Output(0);
  Y->ResizeLike(X);

  if (X.IsType<float>()) {
    return DoRunWithType<float, float>();
  } else if (X.IsType<at::Half>()) {
    return DoRunWithType<at::Half, float>();
  } else {
    CAFFE_THROW("Unsupported input type");
  }
  return false;
}

template <typename T, typename M>
bool CuDNNLRNGradientOp::DoRunWithType() {
  const auto& X = Input(0);
  const auto& Y = Input(1);
  const auto& dY = Input(2);
  auto* dX = Output(0);

  if (dY.sizes() != cudnn_input_dims_) {
    VLOG(1) << "Setting descriptors";
    cudnn_input_dims_ = dY.sizes().vec();
    int C = 1, H = 1, W = 1;
    // Normal 4-dimensional tensors for images.
    C = dY.dim32(1);
    H = dY.dim32(2);
    W = dY.dim32(3);
    CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
        data_desc_,
        GetCudnnTensorFormat(StorageOrder::NCHW),
        cudnnTypeWrapper<T>::type,
        dY.dim32(0),
        C,
        H,
        W));
  }

  // run the computation
  CUDNN_ENFORCE(cudnnLRNCrossChannelBackward(
      cudnn_wrapper_.inline_cudnn_handle(),
      norm_desc_,
      CUDNN_LRN_CROSS_CHANNEL_DIM1,
      cudnnTypeWrapper<T>::kOne(),
      data_desc_,
      Y.template data<T>(),
      data_desc_,
      dY.template data<T>(),
      data_desc_,
      X.template data<T>(),
      cudnnTypeWrapper<T>::kZero(),
      data_desc_,
      dX->template mutable_data<T>()));
  return true;
}

bool CuDNNLRNGradientOp::RunOnDevice() {
  // dispatch based on contents of tensor(s)
  const auto& dY = Input(2);
  auto* dX = Output(0);

  dX->ResizeLike(dY);

  if (dY.IsType<float>()) {
    return DoRunWithType<float, float>();
  } else if (dY.IsType<at::Half>()) {
    return DoRunWithType<at::Half, float>();
  } else {
    CAFFE_THROW("Unsupported input type");
  }

  return false;
}

namespace {
REGISTER_CUDNN_OPERATOR(LRN, CuDNNLRNOp);
REGISTER_CUDNN_OPERATOR(LRNGradient, CuDNNLRNGradientOp);
}

}; // namespace caffe2