File: loss_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (77 lines) | stat: -rw-r--r-- 1,844 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#include "caffe2/operators/loss_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(AveragedLoss, AveragedLoss<float, CPUContext>);
REGISTER_CPU_OPERATOR(AveragedLossGradient,
                      AveragedLossGradient<float, CPUContext>);

OPERATOR_SCHEMA(AveragedLoss)
  .NumInputs(1)
  .NumOutputs(1)
  .ScalarType(TensorProto::FLOAT)
  .SetDoc(R"DOC(
The *AveragedLoss* op takes a single 1-D input tensor *input* and returns a single output float value *output*. The output represents the average of the values in *input*. This op is commonly used for averaging losses, hence the name, however it does not exclusively operate on losses.

Github Links:

- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/loss_op.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/loss_op.cc


<details>

<summary> <b>Example</b> </summary>

**Code**

```

workspace.ResetWorkspace()

op = core.CreateOperator(
    "AveragedLoss",
    ["input"],
    ["output"],
)

workspace.FeedBlob("input", np.array([8, 10, 12]).astype(np.float32))
print("input:\n", workspace.FetchBlob("input"))

workspace.RunOperatorOnce(op)
print("output: \n", workspace.FetchBlob("output"))

```

**Result**

```

input:
 [ 8. 10. 12.]
output:
 10.0

```

</details>


)DOC")
  .Input(0, "input", "The input data as Tensor")
  .Output(0, "output", "The output tensor of size 1 containing the averaged value.");

OPERATOR_SCHEMA(AveragedLossGradient).NumInputs(2).NumOutputs(1);

class GetAveragedLossGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    return SingleGradientDef(
        "AveragedLossGradient", "",
        vector<string>{I(0), GO(0)},
        vector<string>{GI(0)});
  }
};
REGISTER_GRADIENT(AveragedLoss, GetAveragedLossGradient);

}  // namespace caffe2