1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#include "caffe2/operators/lpnorm_op.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/eigen_utils.h"
namespace caffe2 {
template <>
bool LpNormOp<float, CPUContext>::RunOnDevice() {
const auto& X = Input(0);
auto* norm = Output(0, {1}, at::dtype<float>());
const float* X_data = X.data<float>();
const float size = average_ ? (float)X.numel() : 1.0f;
if (p_ == 1) {
*(norm->template mutable_data<float>()) =
(ConstEigenVectorMap<float>(X_data, X.numel()).array()).abs().sum() /
size;
// L1(x) = sum(|x|), L1_average(x) = sum(\x\) / x.size()
} else if (p_ == 2) {
*(norm->template mutable_data<float>()) =
(ConstEigenVectorMap<float>(X_data, X.numel()).array()).square().sum() /
size;
// L2(x) = (sum(|x|^2)), L2_average(x) = sum(|x|^2) / x.size()
}
return true;
}
template <>
bool LpNormGradientOp<float, CPUContext>::RunOnDevice() {
const auto& X = Input(0);
const auto& dnorm = Input(1);
CAFFE_ENFORCE_EQ(dnorm.dim(), 1);
CAFFE_ENFORCE_EQ(dnorm.dim32(0), 1);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
const float size = average_ ? (float)X.numel() : 1.0f;
if (p_ == 1) {
EigenVectorMap<float>(dX->template mutable_data<float>(), X.numel())
.array() = ConstEigenVectorMap<float>(X.data<float>(), X.numel())
.array()
.unaryExpr([](float x) {
const float kEps = 1e-12f;
if (x < -kEps) {
return -1.0f;
} else if (x > kEps) {
return 1.0f;
} else {
return 0.0f;
}
}) *
((dnorm.data<float>())[0] / size);
} else if (p_ == 2) {
EigenVectorMap<float>(dX->template mutable_data<float>(), X.numel())
.array() =
ConstEigenVectorMap<float>(X.data<float>(), X.numel()).array() * 2.0f *
((dnorm.data<float>())[0] / size);
}
return true;
}
// LpNorm
REGISTER_CPU_OPERATOR(LpNorm, LpNormOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(LpNormGradient, LpNormGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(LpNorm)
.NumInputs(1)
.NumOutputs(1)
.SetDoc(R"DOC(
This op computes the $L_p$ norm of the one dimensional input tensor $X$, and outputs a one dimensional output tensor $Y$. Here, the $L_p$ norm is calculated as
$$L_p(\mathbf{x}) = \sum_i x_i^p$$
This op supports $p$ values of 1 or 2. If the average argument is set, the norm is calculated as Lp_averaged_norm(x) is defined as Lp_averaged_norm(x) = LpNorm(x) / size(x).
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/lpnorm_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/lpnorm_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"LpNorm",
["X"],
["Y"],
p=2
)
X = np.array([5., 2.])
print("X:\n",X)
// Feed X into workspace
workspace.FeedBlob("X", X.astype(np.float32))
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[5. 2.]
Y:
[29.]
```
</details>
)DOC")
.Input(0, "X", "1D Input tensor of data to be operated on.")
.Output(0, "Z", "1D output tensor")
.Arg(
"p",
"*(type: int; default: 2, possible values: {1,2})* Order of the norm in p-norm.")
.Arg(
"average",
"*(type: bool; default: False)* Whether we calculate norm or averaged_norm.The Lp_averaged_norm(x) is defined as Lp_averaged_norm(x) = LpNorm(x) / size(x)")
.TensorInferenceFunction([](const OperatorDef& /* unused */,
const vector<TensorShape>& in) {
std::vector<int64_t> output_dims(1);
output_dims[0] = 1; // 1
return vector<TensorShape>{
CreateTensorShape(vector<int64_t>{output_dims}, in[0].data_type())};
});
OPERATOR_SCHEMA(LpNormGradient)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Given one input float tensor X, derivative dout, and produces one output
float tensor dX. dX is the derivative of the Lp norm of tensor X, computed as
dx = d(sum over |x^p|)/dx, in which p is either 1 or 2(currently only
supports l1 and l2 norm) determined by the argument p.
)DOC")
.Input(0, "X", "1D input tensor")
.Input(1, "dout", "1D input tensor")
.Output(0, "dx", "1D output tensor")
.Arg("p", "Order of the norm in p-norm")
.Arg(
"average",
"whehther we calculate norm or averaged_norm."
"The Lp_averaged_norm(x) is defined as"
"Lp_averaged_normgradient(x) = LpNormGradient(x) / size(x)");
class GetLpNormGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"LpNormGradient",
"",
vector<string>{I(0), GO(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(LpNorm, GetLpNormGradient);
} // namespace caffe2
|