1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
#ifndef CAFFE2_OPERATORS_LSTM_UNIT_OP_H_
#define CAFFE2_OPERATORS_LSTM_UNIT_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/perfkernels/lstm_unit_cpu.h"
#include "caffe2/utils/conversions.h"
namespace caffe2 {
namespace detail {
template <typename T, typename Context>
inline void LSTMUnit(
const int N,
const int D,
const int t,
const T* H_prev,
const T* C_prev,
const T* X,
const int32_t* seqLengths,
const bool drop_states,
T* C,
T* H,
const float forget_bias,
Context* /*context*/) {
LstmUnitCpu<T>(
N, D, t, H_prev, C_prev, X, seqLengths, drop_states, C, H, forget_bias);
}
template <typename T, typename Context>
inline void LSTMUnitGradient(
int N,
int D,
int t,
const T* C_prev,
const T* X,
const int32_t* seqLengths,
const T* C,
const T* H,
const T* C_diff,
const T* H_diff,
bool drop_states,
T* H_prev_diff,
T* C_prev_diff,
T* X_diff,
const float forget_bias,
Context* /*context*/) {
LstmUnitGradientCpu<T>(
N,
D,
t,
C_prev,
X,
seqLengths,
C,
H,
C_diff,
H_diff,
drop_states,
H_prev_diff,
C_prev_diff,
X_diff,
forget_bias);
}
} // namespace detail
template <typename Context>
class LSTMUnitOp : public Operator<Context> {
public:
explicit LSTMUnitOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
forget_bias_(static_cast<float>(
this->template GetSingleArgument<float>("forget_bias", 0.0))),
sequence_lengths_(
this->template GetSingleArgument<bool>("sequence_lengths", true)),
drop_states_(
this->template GetSingleArgument<bool>("drop_states", false)) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
using Operator<Context>::Operator;
template <typename T>
bool DoRunWithType() {
// handle potentially-missing sequence lengths input
const size_t TIMESTEP = SEQ_LENGTHS + (sequence_lengths_ ? 1 : 0);
// Extract N
const auto N = Input(CELL_T_M_1).size(1);
// Gates: 1xNxG
const auto G = Input(GATES).size(2);
const auto D = Input(CELL_T_M_1).size(2);
CAFFE_ENFORCE_EQ(4 * D, G);
const auto* H_prev = Input(HIDDEN_T_M_1).template data<T>();
const auto* C_prev = Input(CELL_T_M_1).template data<T>();
const auto* X = Input(GATES).template data<T>();
const int32_t* seqLengths = nullptr;
if (sequence_lengths_) {
CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).numel(), N);
seqLengths = Input(SEQ_LENGTHS).template data<int32_t>();
}
const auto t = static_cast<OperatorBase*>(this)
->Input<Tensor>(TIMESTEP, CPU)
.template data<int32_t>()[0];
Output(CELL_T)->ResizeLike(Input(CELL_T_M_1));
auto* C = Output(CELL_T)->template mutable_data<T>();
Output(HIDDEN_T)->ResizeLike(Input(CELL_T_M_1));
auto* H = Output(HIDDEN_T)->template mutable_data<T>();
detail::LSTMUnit<T, Context>(
N,
D,
t,
H_prev,
C_prev,
X,
seqLengths,
drop_states_,
C,
H,
forget_bias_,
&context_);
return true;
}
bool RunOnDevice() override {
return DoRunWithType<float>();
}
protected:
INPUT_TAGS(HIDDEN_T_M_1, CELL_T_M_1, GATES, SEQ_LENGTHS);
// additional input tags are determined dynamically based on whether
// sequence_lengths is present.
OUTPUT_TAGS(HIDDEN_T, CELL_T);
float forget_bias_;
bool sequence_lengths_;
private:
bool drop_states_;
};
template <typename Context>
class LSTMUnitGradientOp : public Operator<Context> {
public:
template <class... Args>
explicit LSTMUnitGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
forget_bias_(static_cast<float>(
this->template GetSingleArgument<float>("forget_bias", 0.0))),
sequence_lengths_(
this->template GetSingleArgument<bool>("sequence_lengths", true)),
drop_states_(
this->template GetSingleArgument<bool>("drop_states", false)) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <typename T>
bool DoRunWithType() {
// handle potentially-missing sequence lengths input
const size_t inputOffset = SEQ_LENGTHS + (sequence_lengths_ ? 1 : 0);
const size_t TIMESTEP = inputOffset;
const size_t HIDDEN_T = inputOffset + 1;
const size_t CELL_T = inputOffset + 2;
const size_t HIDDEN_T_GRAD = inputOffset + 3;
const size_t CELL_T_GRAD = inputOffset + 4;
// Extract N
const auto N = Input(CELL_T_M_1).size(1);
// Gates: 1xNxG
const auto G = Input(GATES).size(2);
const auto D = Input(CELL_T_M_1).size(2);
CAFFE_ENFORCE_EQ(4 * D, G);
const auto* C_prev = Input(CELL_T_M_1).template data<T>();
const auto* X = Input(GATES).template data<T>();
const auto t = static_cast<OperatorBase*>(this)
->Input<Tensor>(TIMESTEP, CPU)
.template data<int32_t>()[0];
const auto* C = Input(CELL_T).template data<T>();
const auto* H = Input(HIDDEN_T).template data<T>();
const auto* C_diff = Input(CELL_T_GRAD).template data<T>();
const auto* H_diff = Input(HIDDEN_T_GRAD).template data<T>();
const int32_t* seqLengths = nullptr;
if (sequence_lengths_) {
CAFFE_ENFORCE_EQ(Input(SEQ_LENGTHS).numel(), N);
seqLengths = Input(SEQ_LENGTHS).template data<int32_t>();
}
Output(HIDDEN_T_M_1_GRAD)->ResizeLike(Input(HIDDEN_T_M_1));
auto* H_prev_diff = Output(HIDDEN_T_M_1_GRAD)->template mutable_data<T>();
Output(CELL_T_M_1_GRAD)->ResizeLike(Input(CELL_T_M_1));
auto* C_prev_diff = Output(CELL_T_M_1_GRAD)->template mutable_data<T>();
Output(GATES_GRAD)->ResizeLike(Input(GATES));
auto* X_diff = Output(GATES_GRAD)->template mutable_data<T>();
detail::LSTMUnitGradient<T, Context>(
N,
D,
t,
C_prev,
X,
seqLengths,
C,
H,
C_diff,
H_diff,
drop_states_,
H_prev_diff,
C_prev_diff,
X_diff,
forget_bias_,
&context_);
return true;
}
bool RunOnDevice() override {
return DoRunWithType<float>();
}
protected:
INPUT_TAGS(HIDDEN_T_M_1, CELL_T_M_1, GATES, SEQ_LENGTHS);
// additional input tags are determined dynamically based on whether
// sequence_lengths is present.
OUTPUT_TAGS(HIDDEN_T_M_1_GRAD, CELL_T_M_1_GRAD, GATES_GRAD);
float forget_bias_;
bool sequence_lengths_;
private:
bool drop_states_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_LSTM_UNIT_OP_H_
|