1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
#include <algorithm>
#include <vector>
#include "caffe2/core/tensor.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
using t_tuple = std::tuple<Tensor, Tensor>;
template <typename T>
T copy_ctor(const T& x) {
return x;
}
template <>
Tensor copy_ctor(const Tensor& X) {
return X.UnsafeSharedInstance();
}
template <>
t_tuple copy_ctor(const t_tuple& X) {
return std::make_tuple(copy_ctor(std::get<0>(X)), copy_ctor(std::get<1>(X)));
}
template <>
std::pair<t_tuple, t_tuple> copy_ctor(const std::pair<t_tuple, t_tuple>& X) {
return std::make_pair(copy_ctor(X.first), copy_ctor(X.second));
}
template <>
std::vector<Tensor> copy_ctor(const std::vector<Tensor>& X) {
std::vector<Tensor> Y(X.size());
std::transform(X.begin(), X.end(), Y.begin(), [](const Tensor& x) {
return copy_ctor(x);
});
return Y;
}
template <>
std::vector<t_tuple> copy_ctor(const std::vector<t_tuple>& X) {
std::vector<t_tuple> Y(X.size());
std::transform(X.begin(), X.end(), Y.begin(), [](const t_tuple& x) {
return copy_ctor(x);
});
return Y;
}
template <>
std::vector<std::pair<t_tuple, t_tuple>> copy_ctor(
const std::vector<std::pair<t_tuple, t_tuple>>& X) {
std::vector<std::pair<t_tuple, t_tuple>> Y(X.size());
std::transform(
X.begin(), X.end(), Y.begin(), [](const std::pair<t_tuple, t_tuple>& x) {
return copy_ctor(x);
});
return Y;
}
// Gathers every two elements of a vector in a vector of pairs
template <typename T>
static std::vector<std::pair<T, T>> pair_vec(const std::vector<T>& vals) {
CAFFE_ENFORCE_EQ(
vals.size() % 2,
0,
"Odd number of params or hiddens given to a bidirectional RNN");
std::vector<std::pair<T, T>> result;
result.reserve(vals.size() / 2);
for (int64_t i = 0; i < vals.size(); i += 2) {
result.emplace_back(copy_ctor(vals[i]), copy_ctor(vals[i + 1]));
}
return result;
}
// Flattens a vector of pairs
template <typename T>
static std::vector<T> unpair_vec(std::vector<std::pair<T, T>>&& vals) {
std::vector<T> result;
result.reserve(vals.size() * 2);
for (const auto i : c10::irange(vals.size())) {
result.push_back(std::move(vals[i].first));
result.push_back(std::move(vals[i].second));
}
return result;
}
Tensor matmul(const Tensor& X, const Tensor& W, CPUContext* context) {
const auto canonical_axis = X.canonical_axis_index(1);
const auto M = X.size_to_dim(canonical_axis);
const auto K = X.size_from_dim(canonical_axis);
const auto canonical_axis_w = W.canonical_axis_index(1);
const int N = W.size_to_dim(canonical_axis_w);
auto output_size = X.sizes().vec();
output_size.resize(canonical_axis + 1);
output_size[canonical_axis] = N;
Tensor C(output_size, CPU);
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasTrans,
M,
N,
K,
1,
X.template data<float>(),
W.template data<float>(),
0,
C.template mutable_data<float>(),
context);
return C;
}
Tensor
linear(const Tensor& X, const Tensor& W, const Tensor& B, CPUContext* context) {
auto output = matmul(X, W, context);
if (B) {
const auto canonical_axis = X.canonical_axis_index(1);
const auto M = X.size_to_dim(canonical_axis);
const auto canonical_axis_w = W.canonical_axis_index(1);
const int N = W.size_to_dim(canonical_axis_w);
auto bias_multiplier_ = caffe2::empty({M}, CPU);
math::Set<float, CPUContext>(
M, 1, bias_multiplier_.template mutable_data<float>(), context);
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasNoTrans,
M,
N,
1,
1,
bias_multiplier_.template data<float>(),
B.template data<float>(),
1,
output.template mutable_data<float>(),
context);
}
return output;
}
std::vector<Tensor>
chunk(const Tensor& input, int chunks, int axis, CPUContext* context) {
int canonical_axis = input.canonical_axis_index(axis);
CAFFE_ENFORCE_LT(
canonical_axis, input.dim(), "Axis not in input ndim range.");
const int input_channels = input.dim32(canonical_axis);
CAFFE_ENFORCE_EQ(
input_channels % chunks,
0,
"input channels should be divisible by the number of chunks.");
auto split_size = input_channels / chunks;
vector<int64_t> output_dims(input.sizes().vec());
int before = 1, after = 1;
for (const auto i : c10::irange(canonical_axis)) {
before *= input.dim32(i);
}
for (int i = canonical_axis + 1; i < input.dim(); ++i) {
after *= input.dim32(i);
}
size_t input_offset = 0;
std::vector<Tensor> outputs;
for (const auto i : c10::irange(chunks)) {
(void)i; // Suppress unused variable warning
auto axis_dim = split_size;
output_dims[canonical_axis] = split_size;
Tensor output(output_dims, CPU);
math::CopyMatrix<CPUContext>(
input.itemsize(),
before,
axis_dim * after,
static_cast<const char*>(input.raw_data()) + input_offset,
input.dim32(canonical_axis) * after,
output.raw_mutable_data(input.dtype()),
axis_dim * after,
context,
input.dtype().copy());
input_offset += axis_dim * after * input.itemsize();
outputs.push_back(std::move(output));
}
return outputs;
}
std::vector<Tensor> unbind(const Tensor& input, int axis, CPUContext* context) {
// 1 - Chunk the input tensor along the given axis into N chunks where
// N is the dim(axis)
auto chunks = chunk(input, input.sizes()[axis], axis, context);
// 2 - Compute new dimensions
std::vector<int64_t> newDims = input.sizes().vec();
newDims.erase(newDims.begin() + axis);
// 3 - Reshape chunks to drop the extra dimension
for (const auto i : c10::irange(chunks.size())) {
CAFFE_ENFORCE_EQ(
chunks[i].sizes()[axis], 1, "Got an unexpected chunk size");
chunks[i].Reshape(newDims);
}
return chunks;
}
Tensor
cat(const std::vector<Tensor>& tensorList, int axis, CPUContext* context) {
// Adopted from C2's concat operator
auto input_zero = copy_ctor(tensorList.at(0));
vector<int64_t> outputDims(input_zero.sizes().vec());
CAFFE_ENFORCE(outputDims.size() > 0);
for (const auto i : c10::irange(1, tensorList.size())) {
CAFFE_ENFORCE(input_zero.dtype() == tensorList.at(i).dtype());
outputDims[axis] += tensorList.at(i).sizes()[axis];
}
auto output_channels = outputDims[axis];
Tensor output(outputDims, CPU);
int before = 1, after = 1;
for (const auto i : c10::irange(tensorList.at(0).dim())) {
if (i == axis) {
continue;
}
int dim = input_zero.dim32(i);
if (i < axis) {
before *= dim;
} else {
after *= dim;
}
}
size_t output_offset = 0;
for (const auto& input : tensorList) {
auto axis_dim = input.dim32(axis);
math::CopyMatrix<CPUContext>(
input.itemsize(),
before,
axis_dim * after,
input.raw_data(),
axis_dim * after,
static_cast<char*>(output.raw_mutable_data(input_zero.dtype())) +
output_offset,
output_channels * after,
context,
input_zero.dtype().copy());
output_offset += axis_dim * after * input.itemsize();
}
return output;
}
Tensor
stack(const std::vector<Tensor>& tensorList, int axis, CPUContext* context) {
// 1 - Compute new dimensions
std::vector<int64_t> newDims(tensorList[0].sizes().vec());
std::vector<Tensor> expandedTensorList;
newDims.insert(newDims.begin() + axis, 1);
for (const auto i : c10::irange(tensorList.size())) {
expandedTensorList.emplace_back(tensorList[i].Clone());
expandedTensorList.at(i).Reshape(newDims);
}
return cat(expandedTensorList, axis, context);
}
Tensor sigmoid(const Tensor& X) {
Tensor Y(X.sizes(), CPU);
auto N = X.numel();
EigenVectorArrayMap<float>(Y.template mutable_data<float>(), N) = 1.0 /
(1.0 +
(-ConstEigenVectorArrayMap<float>(X.template data<float>(), N)).exp());
return Y;
}
Tensor tanh(const Tensor& X, CPUContext* context) {
Tensor Y(X.sizes(), CPU);
math::Tanh<float, CPUContext>(
X.numel(),
X.template data<float>(),
Y.template mutable_data<float>(),
context);
return Y;
}
Tensor add(const Tensor& X, const Tensor& Y, CPUContext* context) {
Tensor Z(X.sizes().vec(), CPU);
math::Add<float, CPUContext>(
X.numel(),
X.template data<float>(),
Y.template data<float>(),
Z.template mutable_data<float>(),
context);
return Z;
}
Tensor mul(const Tensor& X, const Tensor& Y, CPUContext* context) {
Tensor Z(X.sizes().vec(), CPU);
math::Mul<float, CPUContext>(
X.numel(),
X.template data<float>(),
Y.template data<float>(),
Z.template mutable_data<float>(),
context);
return Z;
}
Tensor transpose(const Tensor& X, int dim0, int dim1, CPUContext* context) {
int ndim = X.dim();
CAFFE_ENFORCE(ndim > dim0 && ndim > dim1, "Invalid transpose dimensions");
std::vector<int> axes(ndim);
std::iota(axes.begin(), axes.end(), 0);
std::swap(axes[dim0], axes[dim1]);
const std::vector<std::int64_t> X_dims = X.sizes().vec();
std::vector<std::int64_t> Y_dims(ndim);
for (const auto i : c10::irange(ndim)) {
Y_dims[i] = X_dims[axes[i]];
}
Tensor Y(Y_dims, CPU);
math::Transpose<std::int64_t, float, CPUContext>(
ndim,
X_dims.data(),
axes.data(),
X.template data<float>(),
Y.template mutable_data<float>(),
context);
return Y;
}
} // namespace
} // namespace caffe2
|