1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
#include "caffe2/operators/matmul_op.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(MatMul, MatMulOp<float, CPUContext>);
OPERATOR_SCHEMA(MatMul)
.NumInputs(2, 3)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
vector<TensorShape> out(1);
out[0].set_data_type(in[0].data_type());
ArgumentHelper arg_helper(def);
int axis_a = arg_helper.GetSingleArgument<int>("axis_a", 1);
int axis_b = arg_helper.GetSingleArgument<int>("axis_b", 1);
int trans_a = arg_helper.GetSingleArgument<bool>("trans_a", false);
int trans_b = arg_helper.GetSingleArgument<bool>("trans_b", false);
int canonical_axis_a = canonical_axis_index_(axis_a, in[0].dims().size());
int canonical_axis_b = canonical_axis_index_(axis_b, in[0].dims().size());
int M = size_to_dim_(canonical_axis_a, GetDimsVector(in[0]));
int N = size_from_dim_(canonical_axis_b, GetDimsVector(in[1]));
if (trans_a) {
M = size_from_dim_(canonical_axis_a, GetDimsVector(in[0]));
}
if (trans_b) {
N = size_to_dim_(canonical_axis_b, GetDimsVector(in[1]));
}
out[0].add_dims(M);
out[0].add_dims(N);
return out;
})
.SetDoc(R"DOC(
Matrix multiplication $Y = A * B$, where `A` has size (M x K), `B` has size
(K x N), and `Y` will have a size (M x N). To transpose `A` or `B` before
multiplication, pass 1 to the `trans_a` and/or `trans_b` arguments, which
separate the first and second dimensions of the respective matrices using
`axis_a` and `axis_b`.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/matmul_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"MatMul",
["A", "B"],
["Y"],
)
workspace.FeedBlob("A", np.random.randint(10, size=(3,3)).astype(np.float32))
workspace.FeedBlob("B", np.random.randint(10, size=(3,3)).astype(np.float32))
print("A:", workspace.FetchBlob("A"))
print("B:", workspace.FetchBlob("B"))
workspace.RunOperatorOnce(op)
print("Y:", workspace.FetchBlob("Y"))
```
**Result**
```
A: [[1. 8. 3.]
[6. 4. 4.]
[5. 4. 7.]]
B: [[4. 0. 3.]
[3. 1. 1.]
[8. 5. 8.]]
Y: [[52. 23. 35.]
[68. 24. 54.]
[88. 39. 75.]]
```
</details>
)DOC")
.Input(
0,
"A",
"*(type: Tensor`<float>`)* 2D matrix of size (M x K).")
.Input(
1,
"B",
"*(type: Tensor`<float>`)* 2D matrix of size (K x N).")
.Output(
0,
"Y",
"*(type: Tensor`<float>`)* 2D matrix of size (M x N).")
.Arg(
"axis_a",
"*(type: int; default: 1)* Exclusive axis that divides the first and "
"second dimension of matrix `A`.")
.Arg(
"axis_b",
"*(type: int; default: 1)* Exclusive axis that divides the first and "
"second dimension of matrix `B`.")
.Arg(
"trans_a",
"*(type: int; default: 0)* Pass 1 to transpose `A` before multiplication and "
"after the dimension adjustment using `axis_a`.")
.Arg(
"trans_b",
"*(type: int; default: 0)* Pass 1 to transpose `B` before multiplication and "
"after the dimension adjustment using `axis_b`.");
class GetMatMulGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE(def_.input_size() == 2 || def_.input_size() == 3);
// NOLINTNEXTLINE(modernize-use-bool-literals)
bool axis_a = 1;
// NOLINTNEXTLINE(modernize-use-bool-literals)
bool axis_b = 1;
// NOLINTNEXTLINE(modernize-use-bool-literals)
bool trans_a = 0;
// NOLINTNEXTLINE(modernize-use-bool-literals)
bool trans_b = 0;
if (ArgumentHelper::HasArgument(Def(), "trans_a")) {
trans_a = GetArgument(Def(), "trans_a").i();
}
if (ArgumentHelper::HasArgument(Def(), "trans_b")) {
trans_b = GetArgument(Def(), "trans_b").i();
}
if (ArgumentHelper::HasArgument(Def(), "axis_a")) {
axis_a = GetArgument(Def(), "axis_a").i();
}
if (ArgumentHelper::HasArgument(Def(), "axis_b")) {
axis_b = GetArgument(Def(), "axis_b").i();
}
if (trans_a) {
if (trans_b) {
// A'B':
// dA = B'G', dB = G'A'
return vector<OperatorDef>{
CreateOperatorDef(
"MatMul",
"",
vector<string>{I(1), GO(0), I(0)},
vector<string>{GI(0)},
vector<Argument>{MakeArgument<int>("trans_a", 1),
MakeArgument<int>("trans_b", 1),
MakeArgument<int>("axis_a", axis_b)}),
CreateOperatorDef(
"MatMul",
"",
vector<string>{GO(0), I(0), I(1)},
vector<string>{GI(1)},
vector<Argument>{MakeArgument<int>("trans_a", 1),
MakeArgument<int>("trans_b", 1),
MakeArgument<int>("axis_b", axis_a)})};
} else {
// A'B:
// dA = BG', dB = AG
return vector<OperatorDef>{
CreateOperatorDef(
"MatMul",
"",
vector<string>{I(1), GO(0), I(0)},
vector<string>{GI(0)},
vector<Argument>{MakeArgument<int>("trans_b", 1),
MakeArgument<int>("axis_a", axis_b)}),
CreateOperatorDef(
"MatMul",
"",
vector<string>{I(0), GO(0), I(1)},
vector<string>{GI(1)},
vector<Argument>{MakeArgument<int>("axis_a", axis_a)})};
}
} else {
if (trans_b) {
// AB':
// dA = GB, dB = G'A
return vector<OperatorDef>{
CreateOperatorDef(
"MatMul",
"",
vector<string>{GO(0), I(1), I(0)},
vector<string>{GI(0)},
vector<Argument>{MakeArgument<int>("axis_b", axis_b)}),
CreateOperatorDef(
"MatMul",
"",
vector<string>{GO(0), I(0), I(1)},
vector<string>{GI(1)},
vector<Argument>{MakeArgument<int>("trans_a", 1),
MakeArgument<int>("axis_b", axis_a)})};
} else {
// AB:
// dA = GB', dB = A'G
return vector<OperatorDef>{
CreateOperatorDef(
"MatMul",
"",
vector<string>{GO(0), I(1), I(0)},
vector<string>{GI(0)},
vector<Argument>{MakeArgument<int>("trans_b", 1),
MakeArgument<int>("axis_b", axis_b)}),
CreateOperatorDef(
"MatMul",
"",
vector<string>{I(0), GO(0), I(1)},
vector<string>{GI(1)},
vector<Argument>{MakeArgument<int>("trans_a", 1),
MakeArgument<int>("axis_a", axis_a)})};
}
}
}
bool CopyArguments() const override {
return false;
}
};
REGISTER_GRADIENT(MatMul, GetMatMulGradient);
} // namespace caffe2
|