1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
#ifndef CAFFE2_OPERATORS_MEAN_OPS_H_
#define CAFFE2_OPERATORS_MEAN_OPS_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/proto_utils.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <class Context>
class MeanOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(MeanOp)
template <typename T>
bool DoRunWithType() {
auto& input0 = Input(0);
auto* output = Output(0, input0.sizes(), at::dtype<T>());
output->CopyFrom(input0, true /*async*/);
if (InputSize() == 1) {
return true;
}
// Dimension checking
for (const auto i : c10::irange(1, InputSize())) {
if (output->sizes() != Input(i).sizes()) {
CAFFE_THROW(
"Check failed: output->sizes() == Input(i).sizes().",
"Description: Input #",
i,
", input dimension:",
Input(i).sizes(),
" should match output dimension: ",
output->sizes());
}
}
T* output_data = output->template mutable_data<T>();
for (const auto i : c10::irange(1, InputSize())) {
math::Add(
output->numel(),
output_data,
Input(i).template data<T>(),
output_data,
&context_);
}
math::Scale(
output->numel(),
1.0f / InputSize(),
output_data,
output_data,
&context_);
return true;
}
bool RunOnDevice() override {
if (Input(0).template IsType<float>()) {
return DoRunWithType<float>();
} else if (Input(0).template IsType<double>()) {
return DoRunWithType<double>();
} else {
CAFFE_THROW(
"Mean operator only supports 32-bit float or 64-bit double, but",
" input was of type ",
Input(0).dtype().name());
}
}
};
template <class Context>
class MeanGradientOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MeanGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
template <typename T>
bool DoRunWithType() {
auto& dY = Input(0);
const auto* dY_data = dY.template data<T>();
int size = dY.numel();
int num_inputs = OutputSize();
float scale = 1.0f / num_inputs;
// dX0 = scale * dY
auto* dX0 = Output(0, dY.sizes(), at::dtype<T>());
math::Scale(
size, scale, dY_data, dX0->template mutable_data<T>(), &context_);
// Copy the rest dX
for (const auto i : c10::irange(1, num_inputs)) {
auto* cur_dX = Output(i);
cur_dX->ResizeLike(dY);
cur_dX->CopyFrom(*dX0, true /*async*/);
}
return true;
}
bool RunOnDevice() override {
if (Input(0).template IsType<float>()) {
return DoRunWithType<float>();
} else if (Input(0).template IsType<double>()) {
return DoRunWithType<double>();
} else {
CAFFE_THROW(
"Mean operator only supports 32-bit float or 64-bit double, but",
" input was of type ",
Input(0).dtype().name());
}
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_MEAN_OPS_H_
|