1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
#include "caffe2/operators/minmax_ops.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(Min, MinOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(Max, MaxOp<float, CPUContext>);
OPERATOR_SCHEMA(Max)
.NumInputs(1, INT_MAX)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInput(0)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Element-wise max of an arbitrary number of input tensors. This operation can be
performed in-place, by using the first input blob as the output blob. All inputs
must have the same shape and data type, and the output will have the same shape
as the inputs.
Github Link:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/minmax_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Max",
["X", "Y", "Z"],
["X"],
)
workspace.FeedBlob("X", (np.random.rand(3,3)).astype(np.float32))
workspace.FeedBlob("Y", (np.random.rand(3,3)).astype(np.float32))
workspace.FeedBlob("Z", (np.random.rand(3,3)).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
print("Y:", workspace.FetchBlob("Y"))
print("Z:", workspace.FetchBlob("Z"))
workspace.RunOperatorOnce(op)
print("Max:", workspace.FetchBlob("X"))
```
**Result**
```
X:
[[0.4496477 0.07061381 0.7139333 ]
[0.83203 0.05970785 0.72786295]
[0.75988126 0.04601283 0.32820013]]
Y:
[[0.05683139 0.16872478 0.671098 ]
[0.70739156 0.09878621 0.03416285]
[0.34087983 0.94986707 0.67263436]]
Z:
[[0.48051122 0.07141234 0.85264146]
[0.77086854 0.22082241 0.13154659]
[0.42401117 0.995431 0.4263775 ]]
Max:
[[0.48051122 0.16872478 0.85264146]
[0.83203 0.22082241 0.72786295]
[0.75988126 0.995431 0.67263436]]
```
</details>
)DOC")
.Input(
0,
"X, Y, ...",
"*(type: Tensor`<Ord>`)* List of input tensors with the same shape.")
.Output(
0,
"M",
"*(type: Tensor`<Ord>`)* Output tensor with same dimensions as input(s)."
"Contains the maximum valued element at each location.")
.InheritOnnxSchema();
OPERATOR_SCHEMA(Min)
.NumInputs(1, INT_MAX)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInput(0)
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Element-wise min of an arbitrary number of input tensors. This operation can be performed in-place, by using the first input blob as the output blob. All inputs must have the same shape and data type, and the output will have the same shape as the inputs.
Github Link:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/minmax_ops.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Min",
["X", "Y", "Z"],
["X"],
)
workspace.FeedBlob("X", (np.random.rand(2,2)).astype(np.float32))
workspace.FeedBlob("Y", (np.random.rand(2,2)).astype(np.float32))
workspace.FeedBlob("Z", (np.random.rand(2,2)).astype(np.float32))
print("X:", workspace.FetchBlob("X"))
print("Y:", workspace.FetchBlob("Y"))
print("Z:", workspace.FetchBlob("Z"))
workspace.RunOperatorOnce(op)
print("Min:", workspace.FetchBlob("X"))
```
**Result**
```
X:
[[0.32731926 0.4939747 ]
[0.29242373 0.43460014]]
Y:
[[0.40928316 0.916115 ]
[0.77526504 0.29339448]]
Z:
[[0.7899794 0.90335774]
[0.82599413 0.2843068 ]]
Min:
[[0.32731926 0.4939747 ]
[0.29242373 0.2843068 ]]
```
</details>
)DOC")
.Input(
0,
"X, Y, ...",
"*(type: Tensor`<Ord>`)* List of input tensors with the same shape.")
.Output(
0,
"M",
"*(type: Tensor`<Ord>`)* Output tensor with same dimensions as input(s)."
"Contains the minimum valued element at each location.")
.InheritOnnxSchema();
} // namespace caffe2
|