1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#ifndef CAFFE2_OPERATORS_MINMAX_OPS_H_
#define CAFFE2_OPERATORS_MINMAX_OPS_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math.h"
#include <c10/util/irange.h>
namespace caffe2 {
template <typename T, class Context>
class MaxOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(MaxOp)
bool RunOnDevice() override {
const auto& X0 = Input(0);
auto* Y = Output(0);
Y->ResizeLike(X0);
const T* X0_data = X0.template data<T>();
T* Y_data = Y->template mutable_data<T>();
const int N = X0.numel();
if (InputSize() == 1) {
if (Y != &X0) {
context_.template CopySameDevice<T>(N, X0_data, Y_data);
}
return true;
}
const auto& X1 = Input(1);
CAFFE_ENFORCE_EQ(
X0.sizes(),
Y->sizes(),
"Description: Input #1, input dimension:",
X1.sizes(),
" should match output dimension: ",
Y->sizes());
const T* X1_data = X1.template data<T>();
math::Max<T, Context>(N, X0_data, X1_data, Y_data, &context_);
for (const auto i : c10::irange(2, InputSize())) {
const auto& Xi = Input(i);
CAFFE_ENFORCE_EQ(
Xi.sizes(),
Y->sizes(),
"Description: Input #",
i,
", input dimension:",
Input(i).sizes(),
" should match output dimension: ",
Y->sizes());
const T* Xi_data = Xi.template data<T>();
math::Max<T, Context>(N, Y_data, Xi_data, Y_data, &context_);
}
return true;
}
};
template <typename T, class Context>
class MinOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(MinOp)
bool RunOnDevice() override {
const auto& X0 = Input(0);
auto* Y = Output(0);
Y->ResizeLike(X0);
const T* X0_data = X0.template data<T>();
T* Y_data = Y->template mutable_data<T>();
const int N = X0.numel();
if (InputSize() == 1) {
if (Y != &X0) {
context_.template CopySameDevice<T>(N, X0_data, Y_data);
}
return true;
}
const auto& X1 = Input(1);
CAFFE_ENFORCE_EQ(
X0.sizes(),
Y->sizes(),
"Description: Input #1, input dimension:",
X1.sizes(),
" should match output dimension: ",
Y->sizes());
const T* X1_data = X1.template data<T>();
math::Min<T, Context>(N, X0_data, X1_data, Y_data, &context_);
for (const auto i : c10::irange(2, InputSize())) {
const auto& Xi = Input(i);
CAFFE_ENFORCE_EQ(
Xi.sizes(),
Y->sizes(),
"Description: Input #",
i,
", input dimension:",
Input(i).sizes(),
" should match output dimension: ",
Y->sizes());
const T* Xi_data = Xi.template data<T>();
math::Min<T, Context>(N, Y_data, Xi_data, Y_data, &context_);
}
return true;
}
};
template <typename T, class Context>
class SelectGradientOpBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(SelectGradientOpBase)
bool RunOnDevice() override;
};
template <typename T, class Context>
class MaxGradientOp final : public SelectGradientOpBase<T, Context> {
public:
template <class... Args>
explicit MaxGradientOp(Args&&... args)
: SelectGradientOpBase<T, Context>(std::forward<Args>(args)...) {}
~MaxGradientOp() = default;
};
template <typename T, class Context>
class MinGradientOp final : public SelectGradientOpBase<T, Context> {
public:
template <class... Args>
explicit MinGradientOp(Args&&... args)
: SelectGradientOpBase<T, Context>(std::forward<Args>(args)...) {}
~MinGradientOp() = default;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_MINMAX_OPS_H_
|