File: moments_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (121 lines) | stat: -rw-r--r-- 3,114 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#include "caffe2/operators/moments_op.h"

#include <array>
#include <functional>

#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/fixed_divisor.h"

namespace caffe2 {

namespace {

template <typename T, int D>
__global__ void ComputeMomentsGradientCUDAKernel(
    const int X_size,
    const SimpleArray<int, D> Y_strides,
    const SimpleArray<FixedDivisor<int>, D> X_dims,
    const T scale,
    const T* dmean,
    const T* dvariance,
    const T* X,
    const T* mean,
    T* dX) {
  CUDA_1D_KERNEL_LOOP(X_index, X_size) {
    int Y_index = 0;
    int X_index_val = X_index;
#pragma unroll
    for (int i = D - 1; i >= 0; --i) {
      int d;
      X_dims.data[i].DivMod(X_index_val, &X_index_val, &d);
      Y_index += d * Y_strides.data[i];
    }
#if __CUDA_ARCH__ >= 350
    dX[X_index] =
        (__ldg(dmean + Y_index) +
         static_cast<T>(2) * (__ldg(X + X_index) - __ldg(mean + Y_index)) *
             __ldg(dvariance + Y_index)) *
        scale;
#else
    dX[X_index] = (dmean[Y_index] +
                   static_cast<T>(2) * (X[X_index] - mean[Y_index]) *
                       dvariance[Y_index]) *
        scale;
#endif
  }
}

template <typename T, int D>
void ComputeMomentsGradientCUDAImpl(
    const int* Y_dims,
    const int* X_dims,
    const T* dmean,
    const T* dvariance,
    const T* X,
    const T* mean,
    T* dX,
    CUDAContext* context) {
  SimpleArray<int, D> Y_strides_array;
  SimpleArray<FixedDivisor<int>, D> X_dims_array;
  int cur_stride = 1;
  for (int i = D - 1; i >= 0; --i) {
    if (X_dims[i] == 0) {
      return;
    }
    Y_strides_array.data[i] = Y_dims[i] == 1 ? 0 : cur_stride;
    X_dims_array.data[i] = FixedDivisor<int>(X_dims[i]);
    cur_stride *= Y_dims[i];
  }
  const int Y_size =
      std::accumulate(Y_dims, Y_dims + D, 1, std::multiplies<int>());
  const int X_size =
      std::accumulate(X_dims, X_dims + D, 1, std::multiplies<int>());
  const T scale = static_cast<T>(Y_size) / static_cast<T>(X_size);
  ComputeMomentsGradientCUDAKernel<T, D>
      <<<CAFFE_GET_BLOCKS(X_size),
         CAFFE_CUDA_NUM_THREADS,
         0,
         context->cuda_stream()>>>(
          X_size,
          Y_strides_array,
          X_dims_array,
          scale,
          dmean,
          dvariance,
          X,
          mean,
          dX);
  C10_CUDA_KERNEL_LAUNCH_CHECK();
}

} // namespace

template <>
bool MomentsGradientOp<float, CUDAContext>::Compute(
    const std::vector<int>& dY_dims,
    const std::vector<int>& dX_dims,
    const float* dmean_data,
    const float* dvariance_data,
    const float* X_data,
    const float* mean_data,
    float* dX_data) {
  const int ndim = dY_dims.size();
  DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(
      ndim,
      ComputeMomentsGradientCUDAImpl,
      float,
      dY_dims.data(),
      dX_dims.data(),
      dmean_data,
      dvariance_data,
      X_data,
      mean_data,
      dX_data,
      &context_);
  return true;
}

REGISTER_CUDA_OPERATOR(Moments, MomentsOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(MomentsGradient, MomentsGradientOp<float, CUDAContext>);

} // namespace caffe2