1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
#include "caffe2/operators/moments_op.h"
#include <array>
#include <functional>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/fixed_divisor.h"
namespace caffe2 {
namespace {
template <typename T, int D>
__global__ void ComputeMomentsGradientCUDAKernel(
const int X_size,
const SimpleArray<int, D> Y_strides,
const SimpleArray<FixedDivisor<int>, D> X_dims,
const T scale,
const T* dmean,
const T* dvariance,
const T* X,
const T* mean,
T* dX) {
CUDA_1D_KERNEL_LOOP(X_index, X_size) {
int Y_index = 0;
int X_index_val = X_index;
#pragma unroll
for (int i = D - 1; i >= 0; --i) {
int d;
X_dims.data[i].DivMod(X_index_val, &X_index_val, &d);
Y_index += d * Y_strides.data[i];
}
#if __CUDA_ARCH__ >= 350
dX[X_index] =
(__ldg(dmean + Y_index) +
static_cast<T>(2) * (__ldg(X + X_index) - __ldg(mean + Y_index)) *
__ldg(dvariance + Y_index)) *
scale;
#else
dX[X_index] = (dmean[Y_index] +
static_cast<T>(2) * (X[X_index] - mean[Y_index]) *
dvariance[Y_index]) *
scale;
#endif
}
}
template <typename T, int D>
void ComputeMomentsGradientCUDAImpl(
const int* Y_dims,
const int* X_dims,
const T* dmean,
const T* dvariance,
const T* X,
const T* mean,
T* dX,
CUDAContext* context) {
SimpleArray<int, D> Y_strides_array;
SimpleArray<FixedDivisor<int>, D> X_dims_array;
int cur_stride = 1;
for (int i = D - 1; i >= 0; --i) {
if (X_dims[i] == 0) {
return;
}
Y_strides_array.data[i] = Y_dims[i] == 1 ? 0 : cur_stride;
X_dims_array.data[i] = FixedDivisor<int>(X_dims[i]);
cur_stride *= Y_dims[i];
}
const int Y_size =
std::accumulate(Y_dims, Y_dims + D, 1, std::multiplies<int>());
const int X_size =
std::accumulate(X_dims, X_dims + D, 1, std::multiplies<int>());
const T scale = static_cast<T>(Y_size) / static_cast<T>(X_size);
ComputeMomentsGradientCUDAKernel<T, D>
<<<CAFFE_GET_BLOCKS(X_size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
X_size,
Y_strides_array,
X_dims_array,
scale,
dmean,
dvariance,
X,
mean,
dX);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
} // namespace
template <>
bool MomentsGradientOp<float, CUDAContext>::Compute(
const std::vector<int>& dY_dims,
const std::vector<int>& dX_dims,
const float* dmean_data,
const float* dvariance_data,
const float* X_data,
const float* mean_data,
float* dX_data) {
const int ndim = dY_dims.size();
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(
ndim,
ComputeMomentsGradientCUDAImpl,
float,
dY_dims.data(),
dX_dims.data(),
dmean_data,
dvariance_data,
X_data,
mean_data,
dX_data,
&context_);
return true;
}
REGISTER_CUDA_OPERATOR(Moments, MomentsOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(MomentsGradient, MomentsGradientOp<float, CUDAContext>);
} // namespace caffe2
|