1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
#ifndef CAFFE2_OPERATORS_MOMENTS_OP_H_
#define CAFFE2_OPERATORS_MOMENTS_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include <c10/util/irange.h>
#include <algorithm>
#include <vector>
namespace caffe2 {
template <typename T, class Context>
class MomentsOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MomentsOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
axes_(this->template GetRepeatedArgument<int>("axes")),
OP_SINGLE_ARG(bool, "keepdims", keep_dims_, true),
OP_SINGLE_ARG(bool, "allow_broadcast_fastpath", allow_broadcast_fastpath_, true) {}
bool RunOnDevice() override {
const auto& X = Input(0);
const int ndim = X.dim();
if (axes_.empty()) {
axes_.resize(ndim);
std::iota(axes_.begin(), axes_.end(), 0);
} else {
std::sort(axes_.begin(), axes_.end());
CAFFE_ENFORCE_GE(axes_.front(), 0, "Axes ids must be non-negative.");
CAFFE_ENFORCE_LT(
axes_.back(),
ndim,
"Axes ids must be smaller than the dimensions of input.");
}
const std::vector<int> X_dims(X.sizes().cbegin(), X.sizes().cend());
std::vector<int> Y_dims = X_dims;
for (const int axis : axes_) {
Y_dims[axis] = 1;
}
std::vector<std::int64_t> output_dims;
output_dims.reserve(ndim);
std::size_t cur_axis = 0;
for (const auto i : c10::irange(ndim)) {
if (cur_axis < axes_.size() && i == axes_[cur_axis]) {
if (keep_dims_) {
output_dims.push_back(1);
}
++cur_axis;
} else {
output_dims.push_back(X_dims[i]);
}
}
auto* mean = Output(0, output_dims, at::dtype<T>());
auto* var = Output(1, output_dims, at::dtype<T>());
math::Moments<float, Context>(
X_dims.size(),
X_dims.data(),
Y_dims.data(),
X.template data<T>(),
mean->template mutable_data<T>(),
var->template mutable_data<T>(),
&context_,
allow_broadcast_fastpath_);
return true;
}
private:
std::vector<int> axes_;
const int keep_dims_;
const bool allow_broadcast_fastpath_;
};
template <typename T, class Context>
class MomentsGradientOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit MomentsGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
axes_(this->template GetRepeatedArgument<int>("axes")),
OP_SINGLE_ARG(bool, "allow_broadcast_fastpath", allow_broadcast_fastpath_, true) {}
bool RunOnDevice() override {
const auto& dmean = Input(0);
const auto& dvariance = Input(1);
const auto& X = Input(2);
const auto& mean = Input(3);
const int ndim = X.dim();
if (axes_.empty()) {
axes_.resize(ndim);
std::iota(axes_.begin(), axes_.end(), 0);
} else {
std::sort(axes_.begin(), axes_.end());
CAFFE_ENFORCE_GE(axes_.front(), 0, "Axes ids must be non-negative.");
CAFFE_ENFORCE_LT(
axes_.back(),
ndim,
"Axes ids must be smaller than the dimensions of input.");
}
const std::vector<int> dX_dims(X.sizes().cbegin(), X.sizes().cend());
std::vector<int> dY_dims = dX_dims;
for (const int axis : axes_) {
dY_dims[axis] = 1;
}
auto* dX = Output(0, X.sizes(), at::dtype<T>());
return Compute(
dY_dims,
dX_dims,
dmean.template data<T>(),
dvariance.template data<T>(),
X.template data<T>(),
mean.template data<T>(),
dX->template mutable_data<T>());
}
private:
bool Compute(
const std::vector<int>& dY_dims,
const std::vector<int>& dX_dims,
const T* dmean_data,
const T* dvariance_data,
const T* X_data,
const T* mean_data,
T* dX_data);
std::vector<int> axes_;
const bool allow_broadcast_fastpath_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_MOMENTS_OP_H_
|