File: multi_class_accuracy_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (75 lines) | stat: -rw-r--r-- 2,308 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/multi_class_accuracy_op.h"
#include "caffe2/utils/GpuAtomics.cuh"
#include "caffe2/utils/math.h"

namespace caffe2 {

namespace {
__global__ void MultiClassAccuracyKernel(const int N, const int D, const float* Xdata,
    const int* labeldata, float* accuracies, int* amounts) {
  CUDA_1D_KERNEL_LOOP(i, N) {
    float maxval = Xdata[i * D];
    int maxid = 0;
    for (int j = 1; j < D; ++j) {
      if (Xdata[i * D + j] > maxval) {
        maxval = Xdata[i * D + j];
        maxid = j;
      }
    }
    int labelid = labeldata[i];
    if (maxid == labelid) {
      gpu_atomic_add(accuracies + labelid, static_cast<float>(1));
    }
    gpu_atomic_add(amounts + labelid, static_cast<int>(1));
  }
}
__global__ void MultiClassAccuracyDivideKernel(
  const int D, float* accuracies, const int* amounts) {
  CUDA_1D_KERNEL_LOOP(i, D) {
    if (amounts[i]) {
      accuracies[i] /= amounts[i];
    }
  }
}
}  // namespace

template <>
bool MultiClassAccuracyOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(PREDICTION);
  auto& label = Input(LABEL);


  TORCH_DCHECK_EQ(X.dim(), 2);
  // amount, number of instances
  int N = X.dim32(0);
  // dimension, number of classes
  int D = X.dim32(1);
  TORCH_DCHECK_EQ(label.dim(), 1);
  TORCH_DCHECK_EQ(label.dim32(0), N);
  auto* Y0 = Output(0, {D}, at::dtype<float>());
  auto* Y1 = Output(1, {D}, at::dtype<int>());

  const float* Xdata = X.data<float>();
  const int* labeldata = label.data<int>();
  float* accuracies = Y0->template mutable_data<float>();
  int* amounts = Y1->template mutable_data<int>();
  math::Set<float, CUDAContext>(D, 0.0, accuracies, &context_);
  math::Set<int, CUDAContext>(D, 0, amounts, &context_);

  MultiClassAccuracyKernel<<<CAFFE_GET_BLOCKS(N), CAFFE_CUDA_NUM_THREADS,
                              0, context_.cuda_stream()>>>(
      N, D, Xdata, labeldata, accuracies, amounts);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  MultiClassAccuracyDivideKernel<<<CAFFE_GET_BLOCKS(D), CAFFE_CUDA_NUM_THREADS,
                                  0, context_.cuda_stream()>>>(
    D, accuracies, amounts);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

REGISTER_CUDA_OPERATOR(
  MultiClassAccuracy, MultiClassAccuracyOp<float, CUDAContext>);
}  // namespace caffe2