File: norm_planar_yuv_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (58 lines) | stat: -rw-r--r-- 1,765 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include <array>
#include "caffe2/core/operator.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"

namespace caffe2 {

namespace {

class NormalizePlanarYUVOp : public Operator<CPUContext> {
 public:
  USE_OPERATOR_FUNCTIONS(CPUContext);
  using Operator<CPUContext>::Operator;

  bool RunOnDevice() override {
    const auto& X = Input(0);
    const auto& M = Input(1); // mean
    const auto& S = Input(2); // standard deviation

    auto* Z = Output(0, X.sizes(), at::dtype<float>());

    CAFFE_ENFORCE(X.sizes().size() == 4);

    const auto N = X.dim32(0);
    auto C = X.size(1);
    const auto H = X.size(2);
    const auto W = X.size(3);
    CAFFE_ENFORCE(C == M.size(1));
    CAFFE_ENFORCE(C == S.size(1));
    const auto* Xdata = X.data<float>();
    auto* Zdata = Z->template mutable_data<float>();

    // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
    int offset = H * W;
    for (auto n = 0; n < N; n++) { // realistically N will always be 1
      // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
      int batch_offset = n * C * offset;
      for (auto c = 0; c < C; c++) {
        ConstEigenVectorMap<float> channel_s(
            &Xdata[batch_offset + (c * offset)], offset);
        EigenVectorMap<float> channel_d(
            &Zdata[batch_offset + (c * offset)], offset);
        channel_d = channel_s.array() - M.data<float>()[c];
        channel_d = channel_d.array() / S.data<float>()[c];
      }
    }
    return true;
  }
};

REGISTER_CPU_OPERATOR(NormalizePlanarYUV, NormalizePlanarYUVOp);
OPERATOR_SCHEMA(NormalizePlanarYUV)
    .NumInputs(3)
    .NumOutputs(1)
    .AllowInplace({{0, 0}});
;
} // namespace
} // namespace caffe2