File: normalize_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (105 lines) | stat: -rw-r--r-- 3,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#ifndef CAFFE2_OPERATORS_NORMALIZE_OP_H_
#define CAFFE2_OPERATORS_NORMALIZE_OP_H_

#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"

#define KEPS 1e-12f

namespace caffe2 {

template <typename T, class Context>
class NormalizeOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  template <class... Args>
  explicit NormalizeOp(Args&&... args)
      : Operator<Context>(std::forward<Args>(args)...) {}

  bool RunOnDevice() override {
    const auto& x = Input(0);

    const auto* xData = x.template data<T>();
    auto* y = Output(0, x.sizes(), at::dtype<T>());
    auto* yData = y->template mutable_data<T>();

    const auto canonical_axis = x.canonical_axis_index(
        this->template GetSingleArgument<int>("axis", -1));
    const int64_t m = x.dim(canonical_axis);
    const size_t n = x.numel() / m;
    const size_t sf = x.size_from_dim(canonical_axis + 1);
    DoNormalize(xData, yData, m, n, sf);
    return true;
  }

 private:
  const T kEps_ = KEPS;
  void DoNormalize(
      const T* xData,
      T* yData,
      const int m,
      const int n,
      const int sf) {
    using InnerStride = Eigen::InnerStride<Eigen::Dynamic>;
    using StridedVec =
        Eigen::Map<Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;
    using ConstStridedVec =
        Eigen::Map<const Eigen::Matrix<T, 1, Eigen::Dynamic>, 0, InnerStride>;

    for (const auto i : c10::irange(n)) {
      auto base = (i / sf) * sf * m + (i % sf);
      ConstStridedVec xVec(xData + base, 1, m, InnerStride(sf));
      auto norm = xVec.template lpNorm<2>();
      norm = std::max(norm, kEps_);
      StridedVec yVec(yData + base, 1, m, InnerStride(sf));
      yVec = xVec / norm;
    }
  }
};

template <typename T, class Context>
class NormalizeGradientOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  template <class... Args>
  explicit NormalizeGradientOp(Args&&... args)
      : Operator<Context>(std::forward<Args>(args)...) {}

  bool RunOnDevice() override {
    const auto& x = Input(0);
    const auto& gOut = Input(GRAD_OUT);

    auto* gIn = Output(GRAD_IN, gOut.sizes(), at::dtype<T>());

    const auto* xData = x.template data<T>();
    const auto* gOutData = gOut.template data<T>();
    auto* gInData = gIn->template mutable_data<T>();

    const auto canonical_axis = x.canonical_axis_index(
        this->template GetSingleArgument<int>("axis", -1));
    const int m = x.dim32(canonical_axis);
    const int n = x.numel() / m;
    const int sf = x.size_from_dim(canonical_axis + 1);
    DoNormalize(xData, gOutData, gInData, m, n, sf);
    return true;
  }

 private:
  const T kEps_ = KEPS;
  void DoNormalize(
      const T* xData,
      const T* gOutData,
      T* gInData,
      const int m,
      const int n,
      const int sf);

  INPUT_TAGS(INPUT, GRAD_OUT);
  OUTPUT_TAGS(GRAD_IN);
};

} // namespace caffe2

#endif // CAFFE2_OPERATORS_NORMALIZE_OP_H_