File: one_hot_ops.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (374 lines) | stat: -rw-r--r-- 12,539 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#include "caffe2/operators/one_hot_ops.h"

#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/types.h"

namespace caffe2 {

template <>
template <typename T>
bool BatchOneHotOp<CPUContext>::DoRunWithType() {
  auto& input = Input(X);
  auto& lens = Input(LENS);
  auto& vals = Input(VALS);
  CAFFE_ENFORCE_GE(input.dim(), 1);
  auto N = input.size(0);
  auto D = input.size_from_dim(1);
  CAFFE_ENFORCE_EQ(lens.numel(), D);

  const auto* lens_data = lens.template data<int32_t>();
  int64_t output_dim = 0;
  valsOffsets_.resize(D + 1);
  for (int64_t i = 0; i < D; i++) {
    CAFFE_ENFORCE_GE(lens_data[i], 0);
    valsOffsets_[i] = output_dim;
    output_dim += lens_data[i];
  }
  valsOffsets_[D] = output_dim;

  CAFFE_ENFORCE_EQ(vals.numel(), output_dim);

  auto* output = Output(ONE_HOT, {N, output_dim}, at::dtype<T>());

  const auto* input_data = input.template data<T>();
  const auto* vals_data = vals.template data<T>();
  auto* output_data = output->template mutable_data<T>();

  for (int64_t i = 0; i < N; ++i) {
    for (int64_t j = 0; j < D; j++) {
      const auto input_val = input_data[i * D + j];
      for (int64_t k = valsOffsets_[j]; k < valsOffsets_[j + 1]; ++k) {
        output_data[k] = vals_data[k] == input_val;
      }
    }
    output_data += output_dim;
  }

  return true;
}

vector<TensorShape> TensorInferenceForBatchOneHot(
    const OperatorDef& /* def */,
    const vector<TensorShape>& in) {
  std::vector<int64_t> output_dims(2);
  output_dims[0] = in[0].dims(0); // N
  output_dims[1] = in[2].dims(0); // vals.size()
  return vector<TensorShape>{
      CreateTensorShape(vector<int64_t>{output_dims}, in[0].data_type())};
}

vector<TensorShape> TensorInferenceForBucketBatchOneHot(
    const OperatorDef& /* def */,
    const vector<TensorShape>& in) {
  std::vector<int64_t> output_dims(2);
  output_dims[0] = in[0].dims(0); // N
  output_dims[1] = in[1].dims(0) + in[2].dims(0); // vals.size() + length.size()
  return vector<TensorShape>{
      CreateTensorShape(vector<int64_t>{output_dims}, in[0].data_type())};
}

OpSchema::Cost CostInferenceForBatchOneHot(
    const OperatorDef& def,
    const vector<TensorShape>& in) {
  CAFFE_ENFORCE_EQ(in.size(), 3, "BatchOneHot requires three inputs");
  struct OpSchema::Cost c;
  const TensorShape output = TensorInferenceForBatchOneHot(def, in)[0];

  const auto& data = in[0];
  const auto& length = in[1];
  const auto& values = in[2];

  auto const& data_element_size_byte =
      DataTypeToTypeMeta(data.data_type()).itemsize();
  auto const& length_element_size_byte =
      DataTypeToTypeMeta(length.data_type()).itemsize();
  auto const& values_element_size_byte =
      DataTypeToTypeMeta(values.data_type()).itemsize();
  auto const& output_element_size_byte =
      DataTypeToTypeMeta(output.data_type()).itemsize();

  uint64_t nBytesData = nElemFromDim(data) * data_element_size_byte;
  uint64_t nBytesLength = nElemFromDim(length) * length_element_size_byte;
  uint64_t nBytesValues = nElemFromDim(values) * values_element_size_byte;
  c.flops = 0;
  c.bytes_read = nBytesData + nBytesLength + nBytesValues;
  c.bytes_written = nElemFromDim(output) * output_element_size_byte;
  c.params_bytes = 0;
  return c;
}

template <>
void OneHotOp<CPUContext>::DoOneHotOp(
    int64_t batch_size,
    int64_t index_size,
    const Tensor& indices,
    Tensor* one_hots) {
  const int64_t* indices_ptr = indices.template data<int64_t>();
  float* one_hots_ptr = one_hots->template mutable_data<float>();
  memset(one_hots_ptr, 0, one_hots->nbytes());
  for (int i = 0; i < batch_size; ++i) {
    auto label_idx = indices_ptr[i];
    DCHECK((0 <= label_idx) && (label_idx < index_size));
    one_hots_ptr[label_idx] = 1.0;
    one_hots_ptr += index_size;
  }
}

template <>
bool BatchBucketOneHotOp<CPUContext>::RunOnDevice() {
  auto& input = Input(X);
  auto& lens = Input(LENS);
  auto& boundaries = Input(BOUNDARIES);
  CAFFE_ENFORCE_GE(input.dim(), 1);
  auto N = input.size(0);
  auto D = input.size_from_dim(1);
  CAFFE_ENFORCE_EQ(lens.numel(), D);

  const auto* lens_data = lens.template data<int32_t>();

  CAFFE_ENFORCE_EQ(
      std::accumulate(lens_data, lens_data + lens.numel(), 0),
      boundaries.numel(),
      "The sum of length should be equal to the length of boundaries");

  int64_t output_dim = 0;
  for (int64_t i = 0; i < D; i++) {
    CAFFE_ENFORCE_GT(lens_data[i], 0);
    // Number of buckets is number of bucket edges + 1
    output_dim += (lens_data[i] + 1);
  }

  auto* output = Output(ONE_HOT, {N, output_dim}, at::dtype<float>());

  const auto* input_data = input.template data<float>();
  const auto* boundaries_data = boundaries.template data<float>();
  auto* output_data = output->template mutable_data<float>();

  math::Set<float, CPUContext>(output->numel(), 0.f, output_data, &context_);

  int64_t pos = 0;
  for (int64_t i = 0; i < N; i++) {
    auto* boundaries_offset = boundaries_data;
    int64_t output_offset = 0;

    for (int64_t j = 0; j < D; j++) {
      // here we assume the boundary values for each feature are sorted
      int64_t lower_bucket_idx = std::lower_bound(
                                     boundaries_offset,
                                     boundaries_offset + lens_data[j],
                                     input_data[pos]) -
          boundaries_offset;

      int64_t upper_bucket_idx = std::upper_bound(
                                     boundaries_offset,
                                     boundaries_offset + lens_data[j],
                                     input_data[pos]) -
          boundaries_offset;

      int64_t bucket_idx = (lower_bucket_idx + upper_bucket_idx) / 2;
      output_data[i * output_dim + output_offset + bucket_idx] = 1.0;
      boundaries_offset += lens_data[j];
      output_offset += (lens_data[j] + 1);
      pos++;
    }
  }

  return true;
};

class SegmentOneHotOp : public Operator<CPUContext> {
 public:
  template <class... Args>
  explicit SegmentOneHotOp(Args&&... args)
      : Operator(std::forward<Args>(args)...) {}

  bool RunOnDevice() override {
    auto& lengths = Input(0);
    auto& indices = Input(1);
    auto& index_size_tensor = Input(2);
    CAFFE_ENFORCE(lengths.dim() == 1);
    CAFFE_ENFORCE(indices.dim() == 1);
    CAFFE_ENFORCE(index_size_tensor.numel() == 1);
    auto batch_size = lengths.numel();
    auto index_size = *index_size_tensor.data<int64_t>();
    CAFFE_ENFORCE(index_size > 0);

    auto* lengths_ptr = lengths.data<int32_t>();
    auto* indices_ptr = indices.data<int64_t>();

    auto* one_hots = Output(0, {batch_size, index_size}, at::dtype<float>());
    auto* one_hots_ptr = one_hots->template mutable_data<float>();
    if (one_hots->numel() == 0) {
      return true;
    }
    memset(one_hots_ptr, 0, one_hots->nbytes());
    int el_idx = 0;
    for (int i = 0; i < batch_size; ++i) {
      for (int j = 0; j < lengths_ptr[i]; ++j) {
        DCHECK(el_idx < indices.numel());
        auto label_idx = indices_ptr[el_idx++];
        DCHECK((0 <= label_idx) && (label_idx < index_size));
        one_hots_ptr[label_idx] = 1.0;
      }
      one_hots_ptr += index_size;
    }
    return true;
  }
};
REGISTER_CPU_OPERATOR(BatchBucketOneHot, BatchBucketOneHotOp<CPUContext>);
REGISTER_CPU_OPERATOR(BatchOneHot, BatchOneHotOp<CPUContext>);
REGISTER_CPU_OPERATOR(OneHot, OneHotOp<CPUContext>);
REGISTER_CPU_OPERATOR(SegmentOneHot, SegmentOneHotOp);

OPERATOR_SCHEMA(BatchBucketOneHot)
    .NumInputs(3)
    .NumOutputs(1)
    .DisallowInputFillers() // TODO: enable the filler
    .SetDoc(R"DOC(
Input is a matrix tensor. Its first dimension is the batch
size. For each column, bucketize it based on the boundary values and then do
one hot encoding. The `lengths` specifies the number of boundary values for each
column. The final number of buckets is this number plus 1. This would also be
the expanded feature size. `boundaries` specifies all the boundary values.
Note that each bucket is right-inclusive. That is, given boundary values
[b1, b2, b3], the buckets are defined as (-int, b1], (b1, b2], (b2, b3], (b3, inf).
For example

  data = [[2, 3], [4, 1], [2, 5]], lengths = [2, 3],
  If boundaries = [0.1, 2.5, 1, 3.1, 4.5], then
  output = [[0, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1]]

  If boundaries = [0.1, 2.5, 1, 1, 3.1], then
  output = [[0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 1]]

)DOC")
    .Input(0, "data", "input tensor matrix")
    .Input(1, "lengths", "the size is the same as the width of the `data`")
    .Input(2, "boundaries", "bucket boundaries")
    .Output(
        0,
        "output",
        "output matrix that expands each input column with one hot encoding"
        "based on the bucketization")
    .TensorInferenceFunction(TensorInferenceForBucketBatchOneHot);

OPERATOR_SCHEMA(BatchOneHot)
    .NumInputs(3)
    .NumOutputs(1)
    .ValueKeyLengthInputFillers(
        BatchOneHotOp<CPUContext>::X,
        BatchOneHotOp<CPUContext>::VALS,
        BatchOneHotOp<CPUContext>::LENS)
    .SetDoc(R"DOC(
Input is a matrix tensor. Its first dimension is the batch
size. Expand each column of it using one hot encoding. The `lengths` specifies
the size of each column after encoding, and the `values` is the dictionary value
of one-hot encoding for each column. For example

  If data = [[2, 3], [4, 1], [2, 5]], lengths = [2, 3],
  and values = [2, 4, 1, 3, 5], then

  output = [[1, 0, 0, 1, 0], [0, 1, 1, 0, 0], [1, 0, 0, 0, 1]]
)DOC")
    .Input(0, "data", "input tensor matrix")
    .Input(1, "lengths", "the size is the same as the width of the `data`")
    .Input(2, "values", "one hot encoding dictionary values")
    .Output(
        0,
        "output",
        "output matrix that expands each input column with one hot encoding")
    .TensorInferenceFunction(TensorInferenceForBatchOneHot)
    .CostInferenceFunction(
        OpSchema::CostInferenceFunctionType(CostInferenceForBatchOneHot));

OPERATOR_SCHEMA(OneHot)
    .NumInputs(2)
    .NumOutputs(1)
    .DisallowInputFillers() // TODO: enable the filler
    .SetDoc(R"DOC(
The *OneHot* op accepts two inputs *indices* and *index_size_tensor*, and produces a single output *one_hots*.  For each index in *indices* the op creates a one-hot row in *one_hots* of length *index_size_tensor* where all entries are zero except the entry at the index is 1. The size of *one_hots* is *len(indices)* x *index_size_tensor*.

Github Links:

- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/one_hot_ops.h
- https://github.com/caffe2/caffe2/blob/master/caffe2/operators/one_hot_ops.cc


<details>

<summary> <b>Example</b> </summary>

**Code**

```

workspace.ResetWorkspace()

op = core.CreateOperator(
    "OneHot",
    ["indices", "index_size_tensor"],
    ["one_hots"],
)

workspace.FeedBlob("indices", np.array([0,1,2,3,4]).astype(np.long))
print("indices:\n", workspace.FetchBlob("indices"))

workspace.FeedBlob("index_size_tensor", np.array([5]).astype(np.long))
print("index_size_tensor:\n", workspace.FetchBlob("index_size_tensor"))

workspace.RunOperatorOnce(op)
print("one_hots: \n", workspace.FetchBlob("one_hots"))

```

**Result**

```

indices:
 [0 1 2 3 4]
index_size_tensor:
 [5]
one_hots:
 [[1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0.]
 [0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 1.]]

```

</details>

)DOC")
    .Input(0, "indices", "The active index for each example in the batch.")
    .Input(
        1,
        "index_size_tensor",
        "Scalar with the size of the index. Must be in CPU context")
    .Output(0, "one_hots", "Matrix of size len(indices) x index_size");

OPERATOR_SCHEMA(SegmentOneHot)
    .NumInputs(3)
    .NumOutputs(1)
    .DisallowInputFillers() // TODO: enable the filler
    .SetDoc(R"DOC(
Given a sequence of indices, segmented by the lengths tensor, returns a matrix
that has the elements in each sequence set to 1.0, and 0.0 everywhere else.
)DOC")
    .Input(0, "lengths", "Size of each segment.")
    .Input(1, "indices", "Active indices, of size sum(lengths)")
    .Input(2, "index_size_tensor", "Size of the index")
    .Output(0, "one_hots", "Matrix of size len(lengths) x index_size");

NO_GRADIENT(BatchOneHot);
NO_GRADIENT(OneHot);
NO_GRADIENT(SegmentOneHot);
NO_GRADIENT(BucketBatchOneHot);
} // namespace caffe2

C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
    BatchBucketOneHot,
    "_caffe2::BatchBucketOneHot(Tensor data, Tensor lengths, Tensor boundaries) -> Tensor output",
    caffe2::BatchBucketOneHotOp<caffe2::CPUContext>);