1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
#include "caffe2/operators/order_switch_ops.h"
#include <string>
namespace caffe2 {
REGISTER_CPU_OPERATOR(NHWC2NCHW, NHWC2NCHWOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(NCHW2NHWC, NCHW2NHWCOp<float, CPUContext>);
OPERATOR_SCHEMA(NHWC2NCHW)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /*unused*/ /*def*/,
const std::vector<TensorShape>& in) {
CAFFE_ENFORCE_GE(
in[0].dims_size(), 3, "Input for NHWC2NCHW must be >= 3 dimensional");
std::vector<TensorShape> out(1);
out[0].add_dims(in[0].dims(0));
out[0].add_dims(in[0].dims(in[0].dims_size() - 1));
for (auto i = 1; i < in[0].dims_size() - 1; ++i) {
out[0].add_dims(in[0].dims(i));
}
return out;
})
.SetDoc(R"DOC(
The operator switches the order of data in a tensor from NHWC- sample index N,
height H, width H and channels C, to the NCHW order (this is for 2D images).
In general, this operator switches the order of data in a tensor from N H_1 ...
H_k C to N C H_1 ... H_k for k-dimensional features, and currently supports
k=1, 2, and 3.
)DOC")
.Input(0, "data", "The input data (Tensor) in the NHWC order.")
.Output(0, "output", "The output tensor (Tensor) in the NCHW order.");
OPERATOR_SCHEMA(NCHW2NHWC)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /*unused*/ /*def*/,
const std::vector<TensorShape>& in) {
CAFFE_ENFORCE_GE(
in[0].dims_size(), 3, "Input for NCHW2NHWC must be >= 3 dimensional");
std::vector<TensorShape> out(1);
out[0].add_dims(in[0].dims(0));
for (auto i = 2; i < in[0].dims_size(); ++i) {
out[0].add_dims(in[0].dims(i));
}
out[0].add_dims(in[0].dims(1));
return out;
})
.SetDoc(R"DOC(
The operator switches the order of data in a tensor from NCHW- sample index N,
channels C, height H and width W, to the NHWC order (this is for 2D images).
In general, this operator switches the order of data in a tensor from N C H_1
... H_k to N H_1 ... H_k C for k-dimensional features, and currently supports
k=1, 2, and 3.
)DOC")
.Input(0, "data", "The input data (Tensor) in the NCHW order.")
.Output(0, "output", "The output tensor (Tensor) in the NHWC order.");
namespace {
class GetNHWC2NCHWGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"NCHW2NHWC",
"",
std::vector<std::string>{GO(0)},
std::vector<std::string>{GI(0)});
}
};
class GetNCHW2NHWCGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"NHWC2NCHW",
"",
std::vector<std::string>{GO(0)},
std::vector<std::string>{GI(0)});
}
};
} // namespace
REGISTER_GRADIENT(NHWC2NCHW, GetNHWC2NCHWGradient);
REGISTER_GRADIENT(NCHW2NHWC, GetNCHW2NHWCGradient);
} // namespace caffe2
|