1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
#include <cub/cub.cuh>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/pack_segments.h"
#include "caffe2/utils/cub_namespace.cuh"
namespace caffe2 {
namespace {
template <typename T, typename Data_T>
__global__ void PackSegmentsKernel(
const Data_T* data_ptr,
const T* lengths_ptr,
const T* lengths_cum_sum,
const T max_length,
const int64_t num_seq,
const int64_t cell_size,
Data_T padding,
bool* presence_ptr,
Data_T* out_ptr) {
CUDA_1D_KERNEL_LOOP(i, num_seq * max_length * cell_size) {
int seq = (i / cell_size) / max_length;
int cell = (i / cell_size) % max_length;
int offset = i % cell_size;
if (presence_ptr && offset == 0) {
presence_ptr[i / cell_size] = cell < lengths_ptr[seq];
}
if (cell >= lengths_ptr[seq]) {
out_ptr[i] = padding;
} else {
int32_t idx = (lengths_cum_sum[seq] + cell) * cell_size + offset;
out_ptr[i] = data_ptr[idx];
}
}
}
template <typename T, typename Data_T>
__global__ void UnpackSegmentsKernel(
const Data_T* data_ptr,
const T* lengths_ptr,
const T* lengths_cum_sum,
const T max_length,
const int64_t num_seq,
const int64_t cell_size,
Data_T* out_ptr) {
CUDA_1D_KERNEL_LOOP(i, num_seq * max_length * cell_size) {
int seq = (i / cell_size) / max_length;
int cell = (i / cell_size) % max_length;
int offset = i % cell_size;
if (cell < lengths_ptr[seq]) {
int idx = (lengths_cum_sum[seq] + cell) * cell_size + offset;
out_ptr[idx] = data_ptr[i];
}
}
}
template <typename T>
int64_t int_array_sum(
const T* dev_array,
int64_t num_items,
Tensor& dev_buffer,
Tensor& dev_sum,
Tensor& host_sum,
CUDAContext& context) {
// Retrieve buffer size
size_t temp_storage_bytes = 0;
cub::DeviceReduce::Sum(
nullptr,
temp_storage_bytes,
dev_array,
dev_sum.mutable_data<int64_t>(),
num_items,
context.cuda_stream());
// Allocate temporary storage
auto buffer_size = (temp_storage_bytes + sizeof(T)) / sizeof(T);
dev_buffer.Resize(buffer_size);
void* dev_temp_storage = static_cast<void*>(dev_buffer.mutable_data<T>());
// Find sumimum
cub::DeviceReduce::Sum(
dev_temp_storage,
temp_storage_bytes,
dev_array,
dev_sum.mutable_data<int64_t>(),
num_items,
context.cuda_stream());
// Copy to host
host_sum.CopyFrom(dev_sum);
context.FinishDeviceComputation();
return *host_sum.data<int64_t>();
}
template <typename T>
T array_max(
const T* dev_array,
int64_t num_items,
Tensor& dev_max_buffer,
Tensor& dev_max,
Tensor& host_max,
CUDAContext& context) {
// Retrieve buffer size
size_t temp_storage_bytes = 0;
cub::DeviceReduce::Max(
nullptr,
temp_storage_bytes,
dev_array,
dev_max.mutable_data<T>(),
num_items,
context.cuda_stream());
// Allocate temporary storage
auto buffer_size = (temp_storage_bytes + sizeof(T)) / sizeof(T);
dev_max_buffer.Resize(buffer_size);
void* dev_temp_storage = static_cast<void*>(dev_max_buffer.mutable_data<T>());
// Find maximum
cub::DeviceReduce::Max(
dev_temp_storage,
temp_storage_bytes,
dev_array,
dev_max.mutable_data<T>(),
num_items,
context.cuda_stream());
// Copy to host
host_max.CopyFrom(dev_max);
context.FinishDeviceComputation();
return *host_max.data<T>();
}
template <typename T>
void array_prefix_sum_exclusive(
const T* dev_array,
const int32_t num_items,
Tensor& prefix_buffer,
Tensor& prefix_sum,
CUDAContext& context) {
// Retrieve buffer size
size_t temp_storage_bytes = 0;
prefix_sum.Resize(num_items);
cub::DeviceScan::ExclusiveSum(
nullptr,
temp_storage_bytes,
dev_array,
prefix_sum.mutable_data<T>(),
num_items,
context.cuda_stream());
// Allocate temporary storage
auto buffer_size = (temp_storage_bytes + sizeof(T)) / sizeof(T);
prefix_buffer.Resize(buffer_size);
void* dev_temp_storage = static_cast<void*>(prefix_buffer.mutable_data<T>());
// Exclusive sum
cub::DeviceScan::ExclusiveSum(
dev_temp_storage,
temp_storage_bytes,
dev_array,
prefix_sum.mutable_data<T>(),
num_items,
context.cuda_stream());
}
} // namespace
template <>
template <typename T>
bool PackSegmentsOp<CUDAContext>::DoRunWithType() {
return DispatchHelper<TensorTypes2<char, int32_t, int64_t, float>, T>::call(
this, Input(DATA));
}
template <>
template <typename T, typename Data_T>
bool PackSegmentsOp<CUDAContext>::DoRunWithType2() {
const auto& data = Input(DATA);
const auto& lengths = Input(LENGTHS);
int64_t num_seq = lengths.dim(0);
const Data_T* data_ptr = data.data<Data_T>();
const T* lengths_ptr = lengths.data<T>();
auto* out = Output(0);
Tensor* presence_mask = nullptr;
if (return_presence_mask_) {
presence_mask = Output(1);
}
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
// Find the length of the longest sequence.
dev_max_length_.Resize(1);
host_max_length_.Resize(1);
T temp = num_seq > 0 ? array_max<T>(
lengths_ptr,
num_seq,
dev_buffer_,
dev_max_length_,
host_max_length_,
context_)
: 0;
if (max_length_ != -1) {
CAFFE_ENFORCE_GE(
max_length_,
temp,
"Pre-defined max_length should be greater than the real max_length");
temp = max_length_;
}
const T& max_length = temp;
// Compute prefix sum over the lengths
array_prefix_sum_exclusive<T>(
lengths_ptr, num_seq, dev_buffer_, dev_lengths_prefix_sum_, context_);
bool* presence_mask_data = nullptr;
if (return_presence_mask_) {
std::vector<int64_t> presence_shape{lengths.numel(), max_length};
presence_mask->Resize(presence_shape);
presence_mask_data = presence_mask->template mutable_data<bool>();
}
// create output tensor
auto shape = data.sizes().vec(); // Shape of out is batch_size x max_len x ...
shape[0] = max_length;
shape.insert(shape.begin(), lengths.numel());
out->Resize(shape);
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.meta()));
// Return empty out (with the proper shape) if first dim is 0.
if (!data.dim(0)) {
return true;
}
// Do padding
Data_T padding = out->IsType<float>() ? padding_ : 0;
int64_t cell_size = data.numel() / data.dim(0);
PackSegmentsKernel<<<
CAFFE_GET_BLOCKS(num_seq * max_length * cell_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
data_ptr,
lengths_ptr,
dev_lengths_prefix_sum_.data<T>(),
max_length,
num_seq,
cell_size,
padding,
presence_mask_data,
out_ptr);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
template <>
template <typename T>
bool UnpackSegmentsOp<CUDAContext>::DoRunWithType() {
return DispatchHelper<TensorTypes2<char, int32_t, int64_t, float>, T>::call(
this, Input(DATA));
}
template <>
template <typename T, typename Data_T>
bool UnpackSegmentsOp<CUDAContext>::DoRunWithType2() {
const auto& data = Input(DATA);
const auto& lengths = Input(LENGTHS);
int64_t num_seq = lengths.dim(0);
const Data_T* data_ptr = data.data<Data_T>();
const T* lengths_ptr = lengths.data<T>();
auto* out = Output(0);
CAFFE_ENFORCE_GE(data.dim(), 1, "DATA should be at least 1-D");
CAFFE_ENFORCE_EQ(lengths.dim(), 1, "LENGTH should be 1-D");
// Compute prefix sum over the lengths
array_prefix_sum_exclusive<T>(
lengths_ptr, num_seq, dev_buffer_, dev_lengths_prefix_sum_, context_);
// compute max of the lengths
dev_max_length_.Resize(1);
host_max_length_.Resize(1);
T temp = num_seq > 0 ? array_max<T>(
lengths_ptr,
num_seq,
dev_buffer_,
dev_max_length_,
host_max_length_,
context_)
: 0;
if (max_length_ != -1) {
CAFFE_ENFORCE_EQ(
max_length_,
data.dim(1),
"max_length should be equal to the packed segments");
CAFFE_ENFORCE_GE(
max_length_,
temp,
"Pre-defined max_length should be greater than the real max_length");
temp = max_length_;
}
const T& max_length = temp;
// compute num of cells: sum of the lengths
dev_num_cell_.Resize(1);
host_num_cell_.Resize(1);
const int64_t num_cell = int_array_sum<T>(
lengths_ptr,
num_seq,
dev_buffer_,
dev_num_cell_,
host_num_cell_,
context_);
// create output tensor
auto shape = data.sizes().vec();
CAFFE_ENFORCE_EQ(
shape[0], lengths.dim(0), "LENGTH should match DATA in dimension 0");
shape.erase(shape.begin());
shape[0] = num_cell;
out->Resize(shape);
Data_T* out_ptr = static_cast<Data_T*>(out->raw_mutable_data(data.meta()));
// Return empty out (with the proper shape) if any of the dimensions is 0.
if (data.dim(0) == 0 || data.dim(1) == 0) {
return true;
}
// Unpack
int64_t cell_size = data.numel() / (data.dim(0) * data.dim(1));
UnpackSegmentsKernel<<<
CAFFE_GET_BLOCKS(num_seq * max_length * cell_size),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
data_ptr,
lengths_ptr,
dev_lengths_prefix_sum_.data<T>(),
max_length,
num_seq,
cell_size,
out_ptr);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(UnpackSegments, UnpackSegmentsOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(PackSegments, PackSegmentsOp<CUDAContext>);
} // namespace caffe2
|