1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
#include "caffe2/operators/pad_op.h"
#include <algorithm>
namespace caffe2 {
PadMode StringToPadMode(const string& mode) {
if (mode == "constant") {
return PadMode::CONSTANT;
} else if (mode == "reflect") {
return PadMode::REFLECT;
} else if (mode == "edge") {
return PadMode::EDGE;
} else {
CAFFE_THROW("Unknown padding mode: " + mode);
}
}
using std::min;
using std::max;
template <>
bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(0);
auto* Y = Output(0);
int channels = X.dim32(1);
int height = X.dim32(2);
int width = X.dim32(3);
ConvPoolOpBase::SetOutputSize(X, Y, channels);
const float* Xdata = X.data<float>();
float* Ydata = Y->template mutable_data<float>();
// The main loop
int padded_height = Y->dim32(2);
int padded_width = Y->dim32(3);
switch (mode_) {
case PadMode::CONSTANT:
for (int n = 0; n < X.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = ph - pad_t();
int w = pw - pad_l();
Ydata[ph * padded_width + pw] =
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
(h < 0 || w < 0 || h >= height || w >= width)
? value_
: Xdata[h * width + w];
}
}
// Do offset.
Xdata += height * width;
Ydata += padded_height * padded_width;
}
}
break;
case PadMode::REFLECT:
if (pad_r() >= 0 && pad_t() >= 0 && pad_l() >= 0 && pad_b() >= 0) {
for (int n = 0; n < X.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
// Handle the valid region:
// i.e. Y[n][c][pad_t:pad_t+h][pad_l:pad_l+w]
auto* Ystart = Ydata + pad_t() * padded_width + pad_l();
math::CopyMatrix<CPUContext>(
sizeof(float),
height,
width,
Xdata,
width,
Ystart,
padded_width,
&context_);
// Fixup areas where we need to reflect
#define X(ph, pw) \
int h = ph - pad_t(); \
int w = pw - pad_l(); \
h = max(h, -h); \
h = min(h, 2 * height - h - 2); \
w = max(w, -w); \
w = min(w, 2 * width - w - 2); \
Ydata[ph * padded_width + pw] = Xdata[h * width + w]
// Top part
for (int ph = 0; ph < pad_t(); ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
X(ph, pw);
}
}
// Bottom part
for (int ph = padded_height - pad_b(); ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
X(ph, pw);
}
}
// Interior
for (int ph = pad_t(); ph < padded_height - pad_b(); ++ph) {
// Left
for (int pw = 0; pw < pad_l(); ++pw) {
X(ph, pw);
}
// Right
for (int pw = padded_width - pad_r(); pw < padded_width; ++pw) {
X(ph, pw);
}
}
#undef X
// Do offset.
Xdata += height * width;
Ydata += padded_height * padded_width;
}
}
} else {
for (int n = 0; n < X.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = ph - pad_t();
int w = pw - pad_l();
// max(h, -h) does reflection over 0
h = max(h, -h);
// min(h, 2 * height - h - 2) does reflection over height.
h = min(h, 2 * height - h - 2);
w = max(w, -w);
w = min(w, 2 * width - w - 2);
Ydata[ph * padded_width + pw] = Xdata[h * width + w];
}
}
// Do offset.
Xdata += height * width;
Ydata += padded_height * padded_width;
}
}
}
break;
case PadMode::EDGE:
for (int n = 0; n < X.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
// Bounds to the right range.
int h = min(height - 1, max(ph - pad_t(), 0));
int w = min(width - 1, max(pw - pad_l(), 0));
Ydata[ph * padded_width + pw] = Xdata[h * width + w];
}
}
// Do offset.
Xdata += height * width;
Ydata += padded_height * padded_width;
}
}
break;
}
return true;
}
template <>
bool PadImageOp<float, CPUContext>::RunOnDeviceWithOrderNHWC() {
auto& X = Input(0);
auto* Y = Output(0);
int height = X.dim32(1);
int width = X.dim32(2);
int channels = X.dim32(3);
ConvPoolOpBase::SetOutputSize(X, Y, channels);
const float* Xdata = X.data<float>();
float* Ydata = Y->template mutable_data<float>();
// The main loop
int padded_height = Y->dim32(1);
int padded_width = Y->dim32(2);
switch (mode_) {
case PadMode::CONSTANT:
for (int n = 0; n < X.dim32(0); ++n) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = ph - pad_t();
int w = pw - pad_l();
const int pad_index = (ph * padded_width + pw) * channels;
if (h < 0 || w < 0 || h >= height || w >= width) {
for (int c = 0; c < channels; ++c) {
Ydata[pad_index + c] = value_;
}
} else {
const int input_index = (h * width + w) * channels;
for (int c = 0; c < channels; ++c) {
Ydata[pad_index + c] = Xdata[input_index + c];
}
}
}
}
// Do offset.
Xdata += X.numel() / X.dim32(0);
Ydata += Y->numel() / Y->dim32(0);
}
break;
case PadMode::REFLECT:
for (int n = 0; n < X.dim32(0); ++n) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
const int pad_index = (ph * padded_width + pw) * channels;
int h = ph - pad_t();
int w = pw - pad_l();
// max(h, -h) does reflection over 0
h = max(h, -h);
// min(h, 2 * height - h - 2) does reflection over height.
h = min(h, 2 * height - h - 2);
w = max(w, -w);
w = min(w, 2 * width - w - 2);
const int input_index = (h * width + w) * channels;
for (int c = 0; c < channels; ++c) {
Ydata[pad_index + c] = Xdata[input_index + c];
}
}
}
// Do offset.
Xdata += X.numel() / X.dim32(0);
Ydata += Y->numel() / Y->dim32(0);
}
break;
case PadMode::EDGE:
for (int n = 0; n < X.dim32(0); ++n) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
const int pad_index = (ph * padded_width + pw) * channels;
int h = min(height - 1, max(ph - pad_t(), 0));
int w = min(width - 1, max(pw - pad_l(), 0));
const int input_index = (h * width + w) * channels;
for (int c = 0; c < channels; ++c) {
Ydata[pad_index + c] = Xdata[input_index + c];
}
}
}
// Do offset.
Xdata += X.numel() / X.dim32(0);
Ydata += Y->numel() / Y->dim32(0);
}
break;
}
return true;
}
template <>
bool PadImageGradientOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() {
auto& dY = Input(0);
auto* dX = Output(
0,
{dY.dim32(0),
dY.dim32(1),
dY.dim32(2) - pad_t() - pad_b(),
dY.dim32(3) - pad_l() - pad_r()},
at::dtype<float>());
int padded_height = dY.dim32(2);
int padded_width = dY.dim32(3);
int channels = dX->dim32(1);
int height = dX->dim32(2);
int width = dX->dim32(3);
const float* dYdata = dY.data<float>();
float* dXdata = dX->template mutable_data<float>();
math::Set<float, CPUContext>(dX->numel(), 0, dXdata, &context_);
// The main loop
switch (mode_) {
case PadMode::CONSTANT:
for (int n = 0; n < dY.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = ph - pad_t();
int w = pw - pad_l();
if (!(h < 0 || w < 0 || h >= height || w >= width)) {
dXdata[h * width + w] += dYdata[ph * padded_width + pw];
}
}
}
// Do offset.
dXdata += height * width;
dYdata += padded_height * padded_width;
}
}
break;
case PadMode::REFLECT:
for (int n = 0; n < dY.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = ph - pad_t();
int w = pw - pad_l();
// max(h, -h) does reflection over 0
h = max(h, -h);
// min(h, 2 * height - h - 2) does reflection over height.
h = min(h, 2 * height - h - 2);
w = max(w, -w);
w = min(w, 2 * width - w - 2);
dXdata[h * width + w] += dYdata[ph * padded_width + pw];
}
}
// Do offset.
dXdata += height * width;
dYdata += padded_height * padded_width;
}
}
break;
case PadMode::EDGE:
for (int n = 0; n < dY.dim32(0); ++n) {
for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = min(height - 1, max(ph - pad_t(), 0));
int w = min(width - 1, max(pw - pad_l(), 0));
dXdata[h * width + w] += dYdata[ph * padded_width + pw];
}
}
// Do offset.
dXdata += height * width;
dYdata += padded_height * padded_width;
}
}
break;
}
return true;
}
template <>
bool PadImageGradientOp<float, CPUContext>::RunOnDeviceWithOrderNHWC() {
auto& dY = Input(0);
auto* dX = Output(
0,
{dY.dim32(0),
dY.dim32(1) - pad_t() - pad_b(),
dY.dim32(2) - pad_l() - pad_r(),
dY.dim32(3)},
at::dtype<float>());
int padded_height = dY.dim32(1);
int padded_width = dY.dim32(2);
int channels = dY.dim32(3);
int height = dX->dim32(1);
int width = dX->dim32(2);
const float* dYdata = dY.data<float>();
float* dXdata = dX->template mutable_data<float>();
math::Set<float, CPUContext>(dX->numel(), 0, dXdata, &context_);
switch (mode_) {
case PadMode::CONSTANT:
for (int n = 0; n < dY.dim32(0); ++n) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
int h = ph - pad_t();
int w = pw - pad_l();
const int pad_index = (ph * padded_width + pw) * channels;
if (!(h < 0 || w < 0 || h >= height || w >= width)) {
const int input_index = (h * width + w) * channels;
for (int c = 0; c < channels; ++c) {
dXdata[input_index + c] += dYdata[pad_index + c];
}
}
}
}
// Do offset.
dXdata += dX->numel() / dX->dim32(0);
dYdata += dY.numel() / dY.dim32(0);
}
break;
case PadMode::REFLECT:
for (int n = 0; n < dY.dim32(0); ++n) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
const int pad_index = (ph * padded_width + pw) * channels;
int h = ph - pad_t();
int w = pw - pad_l();
// max(h, -h) does reflection over 0
h = max(h, -h);
// min(h, 2 * height - h - 2) does reflection over height.
h = min(h, 2 * height - h - 2);
w = max(w, -w);
w = min(w, 2 * width - w - 2);
const int input_index = (h * width + w) * channels;
for (int c = 0; c < channels; ++c) {
dXdata[input_index + c] += dYdata[pad_index + c];
}
}
}
// Do offset.
dXdata += dX->numel() / dX->dim32(0);
dYdata += dY.numel() / dY.dim32(0);
}
break;
case PadMode::EDGE:
for (int n = 0; n < dY.dim32(0); ++n) {
for (int ph = 0; ph < padded_height; ++ph) {
for (int pw = 0; pw < padded_width; ++pw) {
const int pad_index = (ph * padded_width + pw) * channels;
// Bounds to the right range.
int h = min(height - 1, max(ph - pad_t(), 0));
int w = min(width - 1, max(pw - pad_l(), 0));
const int input_index = (h * width + w) * channels;
for (int c = 0; c < channels; ++c) {
dXdata[input_index + c] += dYdata[pad_index + c];
}
}
}
// Do offset.
dXdata += dX->numel() / dX->dim32(0);
dYdata += dY.numel() / dY.dim32(0);
}
break;
}
return true;
}
template <>
std::vector<TensorShape> PadImageOp<float, CPUContext>::PadTensorInference(
const OperatorDef& def,
const vector<TensorShape>& in) {
return ConvPoolOpBase::TensorInferenceForPool(def, in);
}
REGISTER_CPU_OPERATOR(PadImage, PadImageOp<float, CPUContext>);
REGISTER_CPU_GRADIENT_OPERATOR(
PadImageGradient,
PadImageGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(PadImage)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction(PadImageOp<float, CPUContext>::PadTensorInference)
.SetDoc(R"DOC(
PadImage pads values around the boundary of an image according to the pad
values and stride sizes defined by the ConvPoolOpBase operator.
)DOC")
.Input(
0,
"X",
"Input data tensor from the previous operator; dimensions "
"depend on whether the NCHW or NHWC operators are being used. For example, "
"in the former, the input has size (N x C x H x W), where N is the batch "
"size, C is the number of channels, and H and W are the height and the width "
"of the data. The corresponding permutation of dimensions is used in the "
"latter case. ")
.Output(
0,
"Y",
"Output data tensor from padding the H and W dimensions on "
"the tensor. Dimensions will vary based on various pad and stride "
"sizes.");
GRADIENT_OPERATOR_SCHEMA(PadImageGradient).NumInputs(1).NumOutputs(1);
class GetPadImageGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"PadImageGradient", "", vector<string>{GO(0)}, vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(PadImage, GetPadImageGradient);
} // namespace caffe2
|