File: pow_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (95 lines) | stat: -rw-r--r-- 2,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#define CUB_STDERR
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/device/device_reduce.cuh>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/pow_op.h"
#include "caffe2/utils/conversions.h"

namespace caffe2 {

// pow, log and other math functions are defined in
// CUDA math library in header file math.h
#define CUDA_POW(x, y) (pow(x, y))

// renaming to PowOpKernel as there exists PowKernel in caffe2/utils/math_gpu.cc
// Kernels with same leads to conflict during hipification for ROCm platform.
template <int b_is_scalar, typename T1, typename T2, typename R>
__global__ void PowOpKernel(const T1* a, const T2* b, T2 e, R* out, int n) {
  CUDA_1D_KERNEL_LOOP(i, n) {
    out[i] = CUDA_POW(a[i], ((b == NULL) ? e : b[b_is_scalar ? 0 : i]));
  }
}
template <typename T1, typename T2, typename R>
__global__ void
PowBroadcastKernel(const T1* a, const T2* b, R* out, int pre, int n) {
  CUDA_1D_KERNEL_LOOP(i, pre * n) {
    out[i] = CUDA_POW(a[i], b[i % n]);
  }
}
template <typename T1, typename T2, typename R>
__global__ void PowBroadcast2Kernel(
    const T1* a,
    const T2* b,
    R* out,
    int pre,
    int n,
    int post) {
  CUDA_1D_KERNEL_LOOP(i, pre * n * post) {
    out[i] = CUDA_POW(a[i], b[(i / post) % n]);
  }
}

struct CudaPowFunctor {
  template <bool b_is_scalar, typename T1, typename T2, typename R>
  inline void
  Run(size_t n, const T1* a, const T2* b, T2 e, R* out, CUDAContext* context) {
    PowOpKernel<b_is_scalar, T1, T2, R>
        <<<CAFFE_GET_BLOCKS(n),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context->cuda_stream()>>>(a, b, e, out, n);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  template <typename T1, typename T2, typename R>
  void RunWithBroadcast(
      const T1* a,
      const T2* b,
      R* out,
      size_t pre,
      size_t n,
      CUDAContext* context) {
    PowBroadcastKernel<T1, T2, R>
        <<<CAFFE_GET_BLOCKS(pre * n),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context->cuda_stream()>>>(a, b, out, pre, n);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  template <typename T1, typename T2, typename R>
  void RunWithBroadcast2(
      const T1* a,
      const T2* b,
      R* out,
      size_t pre,
      size_t n,
      size_t post,
      CUDAContext* context) {
    PowBroadcast2Kernel<T1, T2, R>
        <<<CAFFE_GET_BLOCKS(pre * n * post),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context->cuda_stream()>>>(a, b, out, pre, n, post);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
};
REGISTER_CUDA_OPERATOR(
    Pow,
    PowOp<
        TensorTypes<float> /*NumericTypes*/,
        CUDAContext,
        CudaPowFunctor,
        SameTypeAsInput>)

} // namespace caffe2