1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/prelu_op.h"
#include "caffe2/utils/cub_namespace.cuh"
#include <cub/block/block_reduce.cuh>
namespace caffe2 {
namespace {
template <typename T>
__global__ void PReluKernel(const int N, const T* X, const T* W, T* Y) {
CUDA_1D_KERNEL_LOOP(i, N) {
Y[i] = (X[i] > 0) * X[i] + (X[i] < 0) * X[i] * W[0];
}
}
template <typename T>
__global__ void PReluKernelNCHW(
const int N,
const int C,
const int dim,
const T* X,
const T* W,
T* Y) {
CUDA_1D_KERNEL_LOOP(i, N * C * dim) {
int c = (i / dim) % C;
Y[i] = (X[i] > 0) * X[i] + (X[i] < 0) * X[i] * W[c];
}
}
template <typename T>
__global__ void
PReluKernelNHWC(const int nitems, const int C, const T* X, const T* W, T* Y) {
CUDA_1D_KERNEL_LOOP(i, nitems) {
int c = i % C;
Y[i] = (X[i] > 0) * X[i] + (X[i] < 0) * X[i] * W[c];
}
}
template <typename T>
__global__ void
PReluGradientKernel(const int N, const T* X, const T* W, const T* dY, T* dX) {
CUDA_1D_KERNEL_LOOP(i, N) {
dX[i] = (X[i] > 0) * dY[i] + (X[i] <= 0) * dY[i] * W[0];
}
}
template <typename T>
__global__ void PReluGradientKernelNCHW(
const int N,
const int C,
const int dim,
const T* X,
const T* W,
const T* dY,
T* dX) {
CUDA_1D_KERNEL_LOOP(i, N * C * dim) {
int c = (i / dim) % C;
dX[i] = (X[i] > 0) * dY[i] + (X[i] <= 0) * dY[i] * W[c];
}
}
template <typename T>
__global__ void PReluGradientKernelNHWC(
const int nitems,
const int C,
const T* X,
const T* W,
const T* dY,
T* dX) {
CUDA_1D_KERNEL_LOOP(i, nitems) {
int c = i % C;
dX[i] = (X[i] > 0) * dY[i] + (X[i] <= 0) * dY[i] * W[c];
}
}
template <typename T>
__global__ void PReluSharedWGradientKernelNCHW(
const int num_items,
const T* Xdata,
const T* dYdata,
T* dW) {
T wsum = 0.0;
for (int i = threadIdx.x; i < num_items; i += blockDim.x) {
wsum += (Xdata[i] <= 0) * dYdata[i] * Xdata[i];
}
typedef cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
T sum = BlockReduce(temp_storage).Sum(wsum);
if (threadIdx.x == 0) {
*dW = sum;
}
}
template <typename T>
__global__ void PReluWGradientKernelNCHW(
const int C,
const int N,
const int num_items,
const T* Xdata,
const T* dYdata,
T* dW) {
int c = blockIdx.x;
T wsum = 0.0;
int items_per_channel = num_items / C;
int items_per_sample_channel = items_per_channel / N;
for (int i = threadIdx.x; i < items_per_channel; i += blockDim.x) {
// TODO: simplify
int n = i / items_per_sample_channel;
int ii = n * items_per_sample_channel * C + c * items_per_sample_channel +
i % items_per_sample_channel;
wsum += (Xdata[ii] <= 0) * dYdata[ii] * Xdata[ii];
}
typedef cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
T sum = BlockReduce(temp_storage).Sum(wsum);
if (threadIdx.x == 0) {
dW[c] = sum;
}
}
template <typename T>
__global__ void PReluWGradientKernelNHWC(
const int C,
const int num_items,
const T* Xdata,
const T* dYdata,
T* dW) {
const auto c = blockIdx.x;
T wsum = 0.0;
const auto items_per_channel = num_items / C;
for (int i = threadIdx.x; i < items_per_channel; i += blockDim.x) {
const auto ii = i * C + c;
wsum += (Xdata[ii] <= 0) * dYdata[ii] * Xdata[ii];
}
typedef cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
T sum = BlockReduce(temp_storage).Sum(wsum);
if (threadIdx.x == 0) {
dW[c] = sum;
}
}
} // namespace
template <>
bool PReluOp<float, CUDAContext>::RunOnDevice() {
const auto& X = Input(0);
const auto& W = Input(1);
auto* Y = Output(0, X.sizes(), at::dtype<float>());
const auto* Xdata = X.data<float>();
const auto* Wdata = W.data<float>();
auto* Ydata = Y->template mutable_data<float>();
const auto C = order_ == StorageOrder::NCHW ? X.dim(1) : X.dim(X.dim() - 1);
const auto C_shared = (W.numel() == 1);
if (!C_shared) {
CAFFE_ENFORCE_EQ(C, W.numel());
}
if (C_shared) {
PReluKernel<<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(X.numel(), Xdata, Wdata, Ydata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
// non-shared case.
switch (order_) {
case StorageOrder::NCHW: {
const auto N = X.dim(0);
const auto dim = X.size_from_dim(2);
CHECK(N * C * dim == X.numel());
PReluKernelNCHW<<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(N, C, dim, Xdata, Wdata, Ydata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
case StorageOrder::NHWC: {
PReluKernelNHWC<<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(X.numel(), C, Xdata, Wdata, Ydata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
default:
CAFFE_THROW("Unknown storage order: ", order_);
}
return true;
}
template <>
bool PReluGradientOp<float, CUDAContext>::RunOnDevice() {
auto& Y = Input(0);
auto& dY = Input(1);
auto& X = Input(2);
auto& W = Input(3);
CAFFE_ENFORCE(&Y != &X, "Cannot backpropagate through an in-place PReLU");
TORCH_DCHECK_EQ(dY.numel(), Y.numel());
auto* dX = Output(0, Y.sizes(), at::dtype<float>());
auto* dW = Output(1, W.sizes(), at::dtype<float>());
const auto C = order_ == StorageOrder::NCHW ? X.dim(1) : X.dim(X.dim() - 1);
const auto C_shared = (W.numel() == 1);
const float* Ydata = Y.data<float>();
const float* dYdata = dY.data<float>();
const float* Xdata = X.data<float>();
const float* Wdata = W.data<float>();
float* dXdata = dX->template mutable_data<float>();
float* dWdata = dW->template mutable_data<float>();
int N = Y.dim(0);
if (C_shared) {
PReluSharedWGradientKernelNCHW<<<
1,
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(X.numel(), Xdata, dYdata, dWdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
PReluGradientKernel<<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(X.numel(), Xdata, Wdata, dYdata, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
// non-shared case.
switch (order_) {
case StorageOrder::NCHW: {
const auto dim = Y.size_from_dim(2);
PReluWGradientKernelNCHW<<<
C,
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(C, N, X.numel(), Xdata, dYdata, dWdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
PReluGradientKernelNCHW<<<
CAFFE_GET_BLOCKS(X.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(N, C, dim, Xdata, Wdata, dYdata, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
case StorageOrder::NHWC: {
PReluWGradientKernelNHWC<<<
C,
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(C, X.numel(), Xdata, dYdata, dWdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
PReluGradientKernelNHWC<<<
CAFFE_GET_BLOCKS(Y.numel()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(X.numel(), C, Xdata, Wdata, dYdata, dXdata);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
default:
CAFFE_THROW("Unknown storage order: ", order_);
}
return true;
}
REGISTER_CUDA_OPERATOR(PRelu, PReluOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(PReluGradient, PReluGradientOp<float, CUDAContext>);
} // namespace caffe2
|