File: quantile_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (151 lines) | stat: -rw-r--r-- 4,193 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#pragma once

#include "caffe2/core/operator.h"
#include "c10/util/irange.h"

#include <cmath>
#include <limits>

namespace caffe2 {

template <typename Context>
class QuantileOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  QuantileOp(const OperatorDef& operator_def, Workspace* ws)
      : Operator<Context>(operator_def, ws),
        quantile_(this->template GetSingleArgument<float>("quantile", -1.0)),
        abs_(this->template GetSingleArgument<bool>("abs", true)),
        tol_(this->template GetSingleArgument<float>("tol", 1e-3)) {
    CAFFE_ENFORCE_GE(
        quantile_,
        0,
        "input quantile should be ",
        "no less than 0, got ",
        quantile_);
    CAFFE_ENFORCE_GE(
        1.0f,
        quantile_,
        "input quantile should be ",
        "no larger than 1, got ",
        quantile_);
    CAFFE_ENFORCE_GT(
        tol_, 0, "tolerance should be ", "no less than 0, got ", tol_);
  }

  bool RunOnDevice() override {
    return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
  }

  template <typename T>
  bool DoRunWithType() {
    Output(QUANTILE_VAL)->Resize(1);
    auto* quantile_val = Output(QUANTILE_VAL)->template mutable_data<T>();

    auto& input_zero = Input(0);
    int64_t numel = input_zero.numel();
    for (const auto i : c10::irange(1, InputSize())) {
      CAFFE_ENFORCE_EQ(
          Input(i).dtype(),
          input_zero.dtype(),
          "All inputs must have the same type, expected: ",
          input_zero.dtype().name(),
          " but got: ",
          Input(i).dtype().name(),
          " for input: ",
          i);
      numel += Input(i).numel();
    }
    CAFFE_ENFORCE_GT(
        numel,
        0,
        "number of total element in input tensor should be ",
        "larger than 0, got ",
        numel);

    // the expected number of elements lessEq to the target value
    const int64_t target_cnt =
        static_cast<int64_t>(std::ceil(numel * quantile_));

    T hi = 0.0;
    T lo = 0.0;
    GetRangeFromInputs(&lo, &hi);
    if (target_cnt == 0) {
      // lowest possible value
      quantile_val[0] = lo;
      return true;
    }
    if (target_cnt == numel) {
      // highest possible value
      quantile_val[0] = hi;
      return true;
    }
    int64_t lo_cnt = CountLowerEq(lo);
    if (lo_cnt >= target_cnt) {
      // the target is one of the lowest value
      quantile_val[0] = lo;
      return true;
    }
    while (std::abs(hi - lo) > tol_ * (std::abs(hi) + std::abs(lo))) {
      // keep hi_cnt > target_idx and lo_cnt <= target_idx
      const T mid = lo + (hi - lo) / 2.0;
      const int64_t mid_cnt = CountLowerEq(mid);
      if (mid_cnt > target_cnt) {
        CAFFE_ENFORCE_NE(
            hi, mid, "numeric precision at limit, unable to continue bisect");
        hi = mid;
      } else if (mid_cnt < target_cnt) {
        CAFFE_ENFORCE_NE(
            lo, mid, "numeric precision at limit, unable to continue bisect");
        lo = mid;
      } else {
        // mid_cnt == target_cnt
        quantile_val[0] = mid;
        return true;
      }
    }
    quantile_val[0] = hi;
    return true;
  }

 protected:
  float quantile_;
  bool abs_;
  float tol_;
  OUTPUT_TAGS(QUANTILE_VAL);

  template <typename T>
  void GetRangeFromInputs(T* lo, T* hi) {
    *hi = std::numeric_limits<T>::lowest();
    *lo = std::numeric_limits<T>::max();
    for (const auto i : c10::irange(InputSize())) {
      const auto* input = Input(i).template data<T>();
      for (const auto j : c10::irange(Input(i).numel())) {
        const T val = abs_ ? std::abs(input[j]) : input[j];
        if (*hi < val) {
          *hi = val;
        }
        if (*lo > val) {
          *lo = val;
        }
      }
    }
  }

  template <typename T>
  int64_t CountLowerEq(const T& thd) {
    int64_t count = 0;
    for (const auto i : c10::irange(InputSize())) {
      const auto* input = Input(i).template data<T>();
      for (const auto j : c10::irange(Input(i).numel())) {
        const T val = abs_ ? std::abs(input[j]) : input[j];
        if (val <= thd) {
          count++;
        }
      }
    }
    return count;
  }
};

} // namespace caffe2