1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
#ifndef CAFFE2_OPERATORS_INT8_ADD_OP_H_
#define CAFFE2_OPERATORS_INT8_ADD_OP_H_
#include <qnnpack.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/operators/quantized/int8_utils.h"
namespace caffe2 {
namespace int8 {
template <Activation Ac>
class Int8AddOp final : public Operator<CPUContext> {
public:
explicit Int8AddOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws), ws_(ws) {}
~Int8AddOp() {
if (this->qnnpackOperator_ != nullptr) {
qnnp_delete_operator(this->qnnpackOperator_);
this->qnnpackOperator_ = nullptr;
}
}
bool RunOnDevice() override {
CAFFE_ENFORCE_EQ(Inputs().size(), 2);
const auto& A = Inputs()[0]->template Get<Int8TensorCPU>();
const auto& B = Inputs()[1]->template Get<Int8TensorCPU>();
auto* Y = Outputs()[0]->template GetMutable<Int8TensorCPU>();
CAFFE_ENFORCE_EQ(
A.t.sizes(),
B.t.sizes(),
"inputs must have the same shape (broadcast semantics is not supported)");
/*
* Record quantization parameters for A and B inputs, because if the op is
* in-place, we may overwrite these parameters later, when we set
* quantization parameters for Y tensor.
*/
const uint8_t A_zero_point = A.zero_point;
const uint8_t B_zero_point = B.zero_point;
const float A_scale = A.scale;
const float B_scale = B.scale;
const int32_t Y_zero_point =
this->template GetSingleArgument<int>("Y_zero_point", 0);
const float Y_scale = this->template GetSingleArgument<float>("Y_scale", 1);
Y->t.ResizeLike(A.t);
Y->zero_point = Y_zero_point;
Y->scale = Y_scale;
initQNNPACK();
#if !defined(FBCODE_CAFFE2) && defined(USE_INTERNAL_PTHREADPOOL_IMPL)
pthreadpool_t threadpool =
reinterpret_cast<pthreadpool_t>(ws_->GetThreadPool());
#endif
if (this->qnnpackOperator_ == nullptr) {
const qnnp_status createStatus = qnnp_create_add_nc_q8(
1 /* channels */,
A_zero_point,
A_scale,
B_zero_point,
B_scale,
static_cast<uint8_t>(Y_zero_point),
Y_scale,
activationLimits(Y_scale, Y_zero_point, Ac).first,
activationLimits(Y_scale, Y_zero_point, Ac).second,
0 /* flags */,
&qnnpackOperator_);
CAFFE_ENFORCE(
createStatus == qnnp_status_success,
"failed to create QNNPACK add operator");
CAFFE_ENFORCE(this->qnnpackOperator_ != nullptr);
}
const qnnp_status setupStatus = qnnp_setup_add_nc_q8(
this->qnnpackOperator_,
A.t.numel() /* batch size */,
A.t.template data<uint8_t>(),
1 /* A stride */,
B.t.template data<uint8_t>(),
1 /* B stride */,
Y->t.template mutable_data<uint8_t>(),
1 /* Y stride */);
CAFFE_ENFORCE(
setupStatus == qnnp_status_success,
"failed to setup QNNPACK add operator");
#if defined(FBCODE_CAFFE2) || !defined(USE_INTERNAL_PTHREADPOOL_IMPL)
const qnnp_status runStatus =
qnnp_run_operator(this->qnnpackOperator_, nullptr /* thread pool */);
#else
const qnnp_status runStatus =
qnnp_run_operator(this->qnnpackOperator_, threadpool);
#endif
CAFFE_ENFORCE(
runStatus == qnnp_status_success, "failed to run QNNPACK add operator");
return true;
}
private:
Workspace* ws_;
// QNNPACK add operator
qnnp_operator_t qnnpackOperator_{nullptr};
};
} // namespace int8
} // namespace caffe2
#endif // CAFFE2_OPERATORS_INT8_ADD_OP_H_
|