File: int8_average_pool_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (65 lines) | stat: -rw-r--r-- 2,681 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include "caffe2/operators/quantized/int8_average_pool_op.h"

namespace caffe2 {

REGISTER_CPU_OPERATOR(
    Int8AveragePool,
    int8::Int8AveragePoolOp<int8::Activation::NONE>);
REGISTER_CPU_OPERATOR(
    Int8AveragePoolRelu,
    int8::Int8AveragePoolOp<int8::Activation::RELU>);

// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
const char kAveragePoolDoc_int8[] = R"DOC(
consumes an input blob X and applies average pooling across the
the blob according to kernel sizes, stride sizes, and pad lengths defined by the
ConvPoolOpBase operator. Average pooling consisting of averaging all values of a
subset of the input tensor according to the kernel size and downsampling the
data into the output blob Y for further processing.
)DOC";

std::function<void(OpSchema&)> AveragePoolDocGenerator(
    const char* dim,
    bool relu_fused = false) {
  return [=](OpSchema& schema) {
    string doc = "AveragePool{dim} {pool_doc}";
    c10::ReplaceAll(doc, "{dim}", dim);
    c10::ReplaceAll(doc, "{pool_doc}", kAveragePoolDoc_int8);
    schema.SetDoc(doc);
    schema.Input(
        0,
        "X",
        "Input data tensor from the previous operator; dimensions depend on "
        "whether the NCHW or NHWC operators are being used. For example, in "
        "the former, the input has size (N x C x H x W), where N is the batch "
        "size, C is the number of channels, and H and W are the height and the "
        "width of the data. The corresponding permutation of dimensions is "
        "used in the latter case.");
    schema.Output(0, "Y", relu_fused ?
        "Output data tensor from average pooling across the input "
        "tensor. Dimensions will vary based on various kernel, stride, and pad "
        "sizes. Output will go through rectified linear "
        "function, where y = max(0, x)." :
        "Output data tensor from average pooling across the input "
        "tensor. Dimensions will vary based on various kernel, stride, and pad "
        "sizes.");
  };
}

OPERATOR_SCHEMA(Int8AveragePool)
    .NumInputs(1)
    .NumOutputs(1)
    .Arg("Y_scale", "Output tensor quantization scale")
    .Arg("Y_zero_point", "Output tensor quantization offset")
    .TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForPool)
    .FillUsing(AveragePoolDocGenerator(""));

OPERATOR_SCHEMA(Int8AveragePoolRelu)
    .NumInputs(1)
    .NumOutputs(1)
    .Arg("Y_scale", "Output tensor quantization scale")
    .Arg("Y_zero_point", "Output tensor quantization offset")
    .TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForPool)
    .FillUsing(AveragePoolDocGenerator("", true));

} // namespace caffe2