File: int8_given_tensor_fill_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (122 lines) | stat: -rw-r--r-- 3,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#ifndef CAFFE2_OPERATORS_INT8_GIVEN_TENSOR_FILL_OP_H_
#define CAFFE2_OPERATORS_INT8_GIVEN_TENSOR_FILL_OP_H_

#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/operators/filler_op.h"
#include "caffe2/utils/cast.h"
#include "caffe2/utils/math.h"

namespace caffe2 {
namespace int8 {

class Int8GivenTensorFillOp final : public Operator<CPUContext> {
 public:
  template <class... Args>
  explicit Int8GivenTensorFillOp(Args&&... args)
      : Operator<CPUContext>(std::forward<Args>(args)...),
        scale_(this->template GetSingleArgument<float>("Y_scale", 1.0)),
        zero_point_(
            this->template GetSingleArgument<int32_t>("Y_zero_point", 0)),
        shape_(this->template GetRepeatedArgument<int64_t>("shape")) {
    ExtractValues();
  }

  bool RunOnDevice() override {
    auto* output = Outputs()[0]->template GetMutable<Int8TensorCPU>();
    ReinitializeTensor(&output->t, shape_, at::dtype<uint8_t>().device(CPU));
    output->scale = scale_;
    output->zero_point = zero_point_;
    return Fill(output);
  }

 private:
  void ExtractValues() {
    auto source_values = this->template GetSingleArgument<string>("values", "");
    ReinitializeTensor(
        &values_,
        {static_cast<int64_t>(source_values.size())},
        at::dtype<uint8_t>().device(CPU));
    uint8_t* values_data = values_.template mutable_data<uint8_t>();
    for (const auto i : c10::irange(source_values.size())) {
      values_data[i] = static_cast<uint8_t>(source_values[i]);
    }
  }

  bool Fill(Int8TensorCPU* output) {
    TORCH_DCHECK_EQ(output->t.numel(), values_.numel())
        << "output size: " << output->t.numel()
        << " given size: " << values_.numel();
    auto* data = output->t.template mutable_data<uint8_t>();
    const uint8_t* values_data = values_.template data<uint8_t>();
    if (output->t.numel()) {
      context_.template CopySameDevice<uint8_t>(
          output->t.numel(), values_data, data);
    }
    return true;
  }

  float scale_;
  int32_t zero_point_;
  vector<int64_t> shape_;
  Tensor values_;
};

class Int8GivenIntTensorFillOp final : public Operator<CPUContext> {
 public:
  template <class... Args>
  explicit Int8GivenIntTensorFillOp(Args&&... args)
      : Operator<CPUContext>(std::forward<Args>(args)...),
        scale_(this->template GetSingleArgument<float>("Y_scale", 1.0)),
        zero_point_(
            this->template GetSingleArgument<int32_t>("Y_zero_point", 0)),
        shape_(this->template GetRepeatedArgument<int64_t>("shape")) {
    ExtractValues();
  }

  bool RunOnDevice() override {
    auto* output = Outputs()[0]->template GetMutable<Int8TensorCPU>();
    output->t.Resize(shape_);
    output->scale = scale_;
    output->zero_point = zero_point_;
    return Fill(output);
  }

 private:
  void ExtractValues() {
    auto source_values = this->template GetRepeatedArgument<int32_t>("values");
    ReinitializeTensor(
        &values_,
        {static_cast<int64_t>(source_values.size())},
        at::dtype<int32_t>().device(CPU));
    auto* values_data = values_.template mutable_data<int32_t>();
    for (const auto i : c10::irange(source_values.size())) {
      values_data[i] = static_cast<int32_t>(source_values[i]);
    }
  }

  bool Fill(Int8TensorCPU* output) {
    TORCH_DCHECK_EQ(output->t.numel(), values_.numel())
        << "output size: " << output->t.numel()
        << " given size: " << values_.numel();
    auto* data = output->t.template mutable_data<int32_t>();
    const auto* values_data = values_.template data<int32_t>();
    if (output->t.numel()) {
      context_.template CopySameDevice<int32_t>(
          output->t.numel(), values_data, data);
    }
    return true;
  }

  float scale_;
  int32_t zero_point_;
  vector<int64_t> shape_;
  Tensor values_;
};

} // namespace int8
} // namespace caffe2

#endif // CAFFE2_OPERATORS_INT8_GIVEN_TENSOR_FILL_OP_H_