File: int8_relu_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (37 lines) | stat: -rw-r--r-- 1,004 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include "caffe2/operators/quantized/int8_relu_op.h"

namespace caffe2 {

namespace {

OpSchema::Cost CostInferenceForRelu(
    const OperatorDef& def,
    const vector<TensorShape>& in) {
  struct OpSchema::Cost cost = PointwiseCostInference<0>(def, in);
  cost.params_bytes = 0;
  return cost;
}

} // namespace

REGISTER_CPU_OPERATOR(Int8Relu, int8::Int8ReluOp);

// Input: X, output: Y
OPERATOR_SCHEMA(Int8Relu)
    .NumInputs(1)
    .NumOutputs(1)
    .Arg("Y_scale", "Output tensor quantization scale")
    .Arg("Y_zero_point", "Output tensor quantization offset")
    .AllowInplace({{0, 0}})
    .CostInferenceFunction(CostInferenceForRelu)
    .IdenticalTypeAndShape()
    .SetDoc(R"DOC(
Relu takes one input data (Tensor<T>) and produces one output data
(Tensor<T>) where the rectified linear function, y = max(0, x), is applied to
the tensor elementwise.
)DOC")
    .Input(0, "X", "1D input tensor")
    .Output(0, "Y", "1D input tensor")
    .InheritOnnxSchema("Relu");

} // namespace caffe2