1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
#ifndef CAFFE2_OPERATORS_INT8_ROI_ALIGN_OP_H_
#define CAFFE2_OPERATORS_INT8_ROI_ALIGN_OP_H_
#include "caffe2/core/common.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/operator_schema.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/operators/quantized/int8_utils.h"
#include "caffe2/utils/math.h"
#include <c10/util/irange.h>
namespace caffe2 {
namespace int8 {
namespace {
struct PreCalc {
int pos1;
int pos2;
int pos3;
int pos4;
uint8_t w1;
uint8_t w2;
uint8_t w3;
uint8_t w4;
};
void pre_calc_for_bilinear_interpolate(
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int iy_upper,
const int ix_upper,
float roi_start_h,
float roi_start_w,
float bin_size_h,
float bin_size_w,
int roi_bin_grid_h,
int roi_bin_grid_w,
std::vector<PreCalc>& pre_calc) {
int pre_calc_index = 0;
// boltnn use a smaller multiplier here. Sometimes w will shrink to 0.
const float w_multiplier = 255.0;
for (const auto ph : c10::irange(pooled_height)) {
for (const auto pw : c10::irange(pooled_width)) {
for (const auto iy : c10::irange(iy_upper)) {
const float yy = roi_start_h + ph * bin_size_h +
static_cast<float>(iy + .5f) * bin_size_h /
static_cast<float>(roi_bin_grid_h); // e.g., 0.5, 1.5
for (const auto ix : c10::irange(ix_upper)) {
const float xx = roi_start_w + pw * bin_size_w +
static_cast<float>(ix + .5f) * bin_size_w /
static_cast<float>(roi_bin_grid_w);
float x = xx;
float y = yy;
// deal with: inverse elements are out of feature map boundary
if (y < -1.0 || y > height || x < -1.0 || x > width) {
// empty
PreCalc pc;
pc.pos1 = 0;
pc.pos2 = 0;
pc.pos3 = 0;
pc.pos4 = 0;
pc.w1 = 0;
pc.w2 = 0;
pc.w3 = 0;
pc.w4 = 0;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
continue;
}
if (y <= 0) {
y = 0;
}
if (x <= 0) {
x = 0;
}
int y_low = (int)y;
int x_low = (int)x;
int y_high;
int x_high;
if (y_low >= height - 1) {
y_high = y_low = height - 1;
y = (float)y_low;
} else {
y_high = y_low + 1;
}
if (x_low >= width - 1) {
x_high = x_low = width - 1;
x = (float)x_low;
} else {
x_high = x_low + 1;
}
float ly = y - y_low;
float lx = x - x_low;
float hy = 1. - ly, hx = 1. - lx;
// w are not necessary 1
uint8_t w1 = static_cast<uint8_t>(Round(hy * hx * w_multiplier));
uint8_t w2 = static_cast<uint8_t>(Round(hy * lx * w_multiplier));
uint8_t w3 = static_cast<uint8_t>(Round(ly * hx * w_multiplier));
uint8_t w4 = static_cast<uint8_t>(Round(ly * lx * w_multiplier));
// save weights and indeces
PreCalc pc;
pc.pos1 = y_low * width + x_low;
pc.pos2 = y_low * width + x_high;
pc.pos3 = y_high * width + x_low;
pc.pos4 = y_high * width + x_high;
pc.w1 = w1;
pc.w2 = w2;
pc.w3 = w3;
pc.w4 = w4;
pre_calc[pre_calc_index] = pc;
pre_calc_index += 1;
}
}
}
}
}
void ROIAlignForward(
const int nthreads,
const uint8_t* bottom_data,
const float& spatial_scale,
const int channels,
const int height,
const int width,
const int pooled_height,
const int pooled_width,
const int sampling_ratio,
const float* bottom_rois,
int roi_cols,
uint8_t* top_data,
const float x_scale,
const float y_scale,
const int32_t x_offset,
const int32_t y_offset,
StorageOrder order /* unused */,
bool continuous_coordinate) {
DCHECK(roi_cols == 4 || roi_cols == 5);
int n_rois = nthreads / channels / pooled_width / pooled_height;
for (const auto n : c10::irange(n_rois)) {
int index_n = n * channels * pooled_width * pooled_height;
// roi could have 4 or 5 columns
const float* offset_bottom_rois = bottom_rois + n * roi_cols;
int roi_batch_ind = 0;
if (roi_cols == 5) {
roi_batch_ind = offset_bottom_rois[0];
offset_bottom_rois++;
}
// Do not using rounding; this implementation detail is critical
float roi_offset = continuous_coordinate ? 0.5 : 0;
float roi_start_w = offset_bottom_rois[0] * spatial_scale - roi_offset;
float roi_start_h = offset_bottom_rois[1] * spatial_scale - roi_offset;
float roi_end_w = offset_bottom_rois[2] * spatial_scale - roi_offset;
float roi_end_h = offset_bottom_rois[3] * spatial_scale - roi_offset;
float roi_width = roi_end_w - roi_start_w;
float roi_height = roi_end_h - roi_start_h;
if (continuous_coordinate) {
CAFFE_ENFORCE(
roi_width >= 0 && roi_height >= 0,
"ROIs in ROIAlign do not have non-negative size!");
} else { // backward compatibility
// Force malformed ROIs to be 1x1
roi_width = std::max(roi_width, (float)1.);
roi_height = std::max(roi_height, (float)1.);
}
float bin_size_h =
static_cast<float>(roi_height) / static_cast<float>(pooled_height);
float bin_size_w =
static_cast<float>(roi_width) / static_cast<float>(pooled_width);
// We use roi_bin_grid to sample the grid and mimic integral
int roi_bin_grid_h = (sampling_ratio > 0)
? sampling_ratio
: ceil(roi_height / pooled_height); // e.g., = 2
int roi_bin_grid_w =
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width);
// We do average (integral) pooling inside a bin
const float count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
// calculate multiplier
double real_multiplier = x_scale / (y_scale * 255.0 * count);
int32_t Y_multiplier;
int Y_shift;
QuantizeMultiplierSmallerThanOne(real_multiplier, &Y_multiplier, &Y_shift);
// we want to precalculate indeces and weights shared by all chanels,
// this is the key point of optimiation
std::vector<PreCalc> pre_calc(
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height);
pre_calc_for_bilinear_interpolate(
height,
width,
pooled_height,
pooled_width,
roi_bin_grid_h,
roi_bin_grid_w,
roi_start_h,
roi_start_w,
bin_size_h,
bin_size_w,
roi_bin_grid_h,
roi_bin_grid_w,
pre_calc);
const uint8_t* offset_bottom_data =
bottom_data + roi_batch_ind * channels * height * width;
int pre_calc_index = 0;
for (const auto ph : c10::irange(pooled_height)) {
for (const auto pw : c10::irange(pooled_width)) {
vector<int32_t> acc_buffer(channels, 0);
for (C10_UNUSED const auto iy : c10::irange(roi_bin_grid_h)) {
for (C10_UNUSED const auto ix : c10::irange(roi_bin_grid_w)) {
PreCalc pc = pre_calc[pre_calc_index];
const uint8_t* data_1 = offset_bottom_data + channels * pc.pos1;
const uint8_t* data_2 = offset_bottom_data + channels * pc.pos2;
const uint8_t* data_3 = offset_bottom_data + channels * pc.pos3;
const uint8_t* data_4 = offset_bottom_data + channels * pc.pos4;
for (const auto c : c10::irange(channels)) {
acc_buffer[c] += (uint32_t)(pc.w1) * (uint32_t)(data_1[c]);
acc_buffer[c] += (uint32_t)(pc.w2) * (uint32_t)(data_2[c]);
acc_buffer[c] += (uint32_t)(pc.w3) * (uint32_t)(data_3[c]);
acc_buffer[c] += (uint32_t)(pc.w4) * (uint32_t)(data_4[c]);
// w_1..4 are all multiplied by 255.0
acc_buffer[c] -= x_offset * 255.0;
}
pre_calc_index += 1;
}
}
int index_nhw = index_n + (ph * pooled_width + pw) * channels;
uint8_t* out_ptr = top_data + index_nhw;
for (const auto c : c10::irange(channels)) {
int32_t a_mul = MultiplyByQuantizedMultiplierSmallerThanOne(
acc_buffer[c], Y_multiplier, Y_shift) +
y_offset;
int32_t clamped_a =
std::min<int32_t>(255, std::max<int32_t>(0, a_mul));
out_ptr[c] = static_cast<uint8_t>(clamped_a);
}
} // for pw
} // for ph
} // for n
}
} // namespace
class Int8RoIAlignOp final : public Operator<CPUContext> {
public:
template <class... Args>
explicit Int8RoIAlignOp(Args&&... args)
: Operator<CPUContext>(std::forward<Args>(args)...),
order_(StringToStorageOrder(
this->template GetSingleArgument<string>("order", "NHWC"))),
spatial_scale_(
this->template GetSingleArgument<float>("spatial_scale", 1.)),
pooled_height_(this->template GetSingleArgument<int>("pooled_h", 1)),
pooled_width_(this->template GetSingleArgument<int>("pooled_w", 1)),
sampling_ratio_(
this->template GetSingleArgument<int>("sampling_ratio", -1)),
aligned_(this->template GetSingleArgument<bool>("aligned", false)) {
TORCH_DCHECK_GT(spatial_scale_, 0);
TORCH_DCHECK_GT(pooled_height_, 0);
TORCH_DCHECK_GT(pooled_width_, 0);
TORCH_DCHECK_GE(sampling_ratio_, 0);
// only supports NHWC
CAFFE_ENFORCE(order_ == StorageOrder::NHWC);
}
bool RunOnDevice() override {
const auto& X = Inputs()[0]->template Get<Int8TensorCPU>(); // Input, NHWC
auto& R = Input(1); // RoIs
auto* Y = Outputs()[0]->template GetMutable<Int8TensorCPU>(); // RoI pooled
// calculate multiplier
int32_t Y_offset = this->template GetSingleArgument<int>("Y_zero_point", 0);
auto Y_scale = this->template GetSingleArgument<float>("Y_scale", 1);
Y->scale = Y_scale;
Y->zero_point = Y_offset;
if (R.numel() == 0) {
// Handle empty rois
Y->t.Resize(0, pooled_height_, pooled_width_, X.t.dim32(3));
// The following mutable_data calls are needed to allocate the tensors
Y->t.mutable_data<uint8_t>();
return true;
}
CAFFE_ENFORCE_EQ(R.dim(), 2);
// if R has 5 columns, the first column is the index, otherwise 0
CAFFE_ENFORCE(R.dim32(1) == 4 || R.dim32(1) == 5);
assert(sampling_ratio_ >= 0);
// only supports NHWC now
ReinitializeTensor(
&Y->t,
{R.dim32(0), pooled_height_, pooled_width_, X.t.dim32(3)},
at::dtype<uint8_t>().device(CPU));
int output_size = Y->t.numel();
ROIAlignForward(
output_size,
X.t.data<uint8_t>(),
spatial_scale_,
X.t.dim32(3),
X.t.dim32(1),
X.t.dim32(2),
pooled_height_,
pooled_width_,
sampling_ratio_,
R.data<float>(),
R.dim32(1),
Y->t.mutable_data<uint8_t>(),
X.scale,
Y_scale,
X.zero_point,
Y_offset,
order_,
aligned_);
return true;
}
protected:
StorageOrder order_;
float spatial_scale_;
int pooled_height_;
int pooled_width_;
int sampling_ratio_;
bool aligned_;
};
} // namespace int8
} // namespace caffe2
#endif // CAFFE2_OPERATORS_INT8_ROI_ALIGN_OP_H_
|