File: int8_utils.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (157 lines) | stat: -rw-r--r-- 4,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#ifndef CAFFE2_INT8_UTILS_H_
#define CAFFE2_INT8_UTILS_H_

#include <gemmlowp/public/gemmlowp.h>

#include "caffe2/utils/threadpool/ThreadPool.h"
#include "caffe2/utils/threadpool/WorkersPool.h"

namespace caffe2 {

/*
 * Initialized QNNPACK (only once).
 * Throws if initialization failed.
 */
void initQNNPACK();

namespace int8 {

/*
 * Code here is partially derived from gemmlowp library
 * (https://github.com/google/gemmlowp)
 */

// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

inline int32_t MultiplyByQuantizedMultiplierSmallerThanOne(
    int32_t x,
    int32_t quantized_multiplier,
    int right_shift) {
  using gemmlowp::RoundingDivideByPOT;
  using gemmlowp::SaturatingRoundingDoublingHighMul;
  return RoundingDivideByPOT(
      SaturatingRoundingDoublingHighMul(x, quantized_multiplier), right_shift);
}

#if defined(__ANDROID__) && !defined(__NDK_MAJOR__)
template <class T>
inline float Round(const float x) {
  return ::nearbyintf(x);
}
inline double Round(const double x) {
  return ::nearbyint(x);
}
#else
template <class T>
inline T Round(const T x) {
  return std::nearbyint(x);
}
#endif

inline uint8_t QuantizeUint8(float scale, int32_t zero_point, float value) {
  const int32_t qmin = std::numeric_limits<uint8_t>::min();
  const int32_t qmax = std::numeric_limits<uint8_t>::max();

  auto r = zero_point + static_cast<int32_t>(Round(value / scale));
  r = std::max(r, qmin);
  r = std::min(r, qmax);
  return static_cast<uint8_t>(r);
}

inline void QuantizeMultiplierSmallerThanOne(
    double double_multiplier,
    int32_t* quantized_multiplier,
    int* right_shift) {
  CHECK(double_multiplier >= 0.);
  CHECK(double_multiplier < 1.);
  if (double_multiplier == 0.) {
    *quantized_multiplier = 0;
    *right_shift = 0;
    return;
  }
  CHECK(double_multiplier > 0.);
  const double q = std::frexp(double_multiplier, right_shift);
  *right_shift *= -1;

  auto q_fixed = static_cast<int64_t>(Round(q * (1ll << 31)));
  CHECK(q_fixed <= (1ll << 31));
  if (q_fixed == (1ll << 31)) {
    q_fixed /= 2;
    --*right_shift;
  }
  TORCH_CHECK_GE(*right_shift, 0);
  TORCH_CHECK_LE(q_fixed, std::numeric_limits<int32_t>::max());
  *quantized_multiplier = static_cast<int32_t>(q_fixed);
}

inline void QuantizeMultiplierGreaterThanOne(
    double double_multiplier,
    int32_t* quantized_multiplier,
    int* left_shift) {
  CHECK(double_multiplier > 1.);
  const double q = std::frexp(double_multiplier, left_shift);
  auto q_fixed = static_cast<int64_t>(Round(q * (1ll << 31)));
  CHECK(q_fixed <= (1ll << 31));
  if (q_fixed == (1ll << 31)) {
    q_fixed /= 2;
    ++*left_shift;
  }
  TORCH_CHECK_GE(*left_shift, 0);
  TORCH_CHECK_LE(q_fixed, std::numeric_limits<int32_t>::max());
  *quantized_multiplier = static_cast<int32_t>(q_fixed);
}

inline int32_t MultiplyByQuantizedMultiplierGreaterThanOne(
    int32_t x,
    int32_t quantized_multiplier,
    int left_shift) {
  using gemmlowp::SaturatingRoundingDoublingHighMul;
  return SaturatingRoundingDoublingHighMul(
      x * (1 << left_shift), quantized_multiplier);
}

inline int CalculateInputRadius(int input_integer_bits, int input_left_shift) {
  const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) *
      (1ll << (31 - input_integer_bits)) / (1ll << input_left_shift);
  // Tighten bound using floor.  Suppose that we could use the exact value.
  // After scaling the difference, the result would be at the maximum.  Thus we
  // must ensure that our value has lower magnitude.
  return static_cast<int>(std::floor(max_input_rescaled));
}

enum class Activation : uint8_t { NONE = 0, RELU = 1 };

inline std::pair<uint8_t, uint8_t>
activationLimits(float scale, int32_t zero_point, Activation Ac) {
  switch (Ac) {
    case Activation::NONE:
      return {std::numeric_limits<uint8_t>::min(),
              std::numeric_limits<uint8_t>::max()};
    case Activation::RELU:
      return {QuantizeUint8(scale, zero_point, 0.0),
              std::numeric_limits<uint8_t>::max()};
    default:
#ifdef _MSC_VER
      __assume(0);
#else
      __builtin_unreachable();
#endif
  }
}

} // namespace int8
} // namespace caffe2

#endif // CAFFE2_INT8_UTILS_H_