File: rank_loss_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (207 lines) | stat: -rw-r--r-- 6,325 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include "caffe2/operators/rank_loss_op.h"

namespace caffe2 {

namespace {

// Computes log(1 + exp(y)) in a way that avoids early over-/under-flow
template <class T>
inline T logLogit(T x) {
  static const auto kMinLogDiff = std::log(std::numeric_limits<T>::epsilon());

  if (x < kMinLogDiff) {
    return 0;
  }
  if (x > -kMinLogDiff) {
    return x;
  }
  return std::log(std::exp(x) + 1);
}
}

template <typename T, class Context>
bool PairWiseLossOp<T, Context>::RunOnDevice() {
  auto& X = Input(XVALUE);
  auto& label = Input(LABEL);

  int N = X.dim() > 0 ? X.dim32(0) : 0;
  if (N == 0) {
    // Set correct data type for output
    Output(YVALUE, {0}, at::dtype<T>());
    return true;
  }

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  const int32_t* lengths_vec;
  int len_size = 1;
  if (InputSize() > LENGTHS) {
    auto& lengths = Input(LENGTHS);
    CAFFE_ENFORCE_EQ(lengths.dim(), 1);
    len_size = lengths.numel();
    lengths_vec = lengths.template data<int32_t>();
    int len_sum = 0;
    if (len_size > 0) {
      math::Sum<int, Context>(len_size, lengths_vec, &len_sum, &context_);
    }
    CAFFE_ENFORCE_EQ(len_sum, N);
  } else {
    lengths_vec = &N;
  }

  // a total of len_size sessions
  auto* Y = Output(YVALUE, {len_size}, at::dtype<T>());
  auto* Ydata = Y->template mutable_data<T>();

  int D = X.numel() / N;
  CAFFE_ENFORCE(
      (label.dim() == 1) || (label.dim() == 2 && label.dim32(1) == 1));
  CAFFE_ENFORCE_EQ(label.dim32(0), N);
  CAFFE_ENFORCE_EQ(1, D); // only support one class at the moment

  const auto* Xdata = X.template data<T>();
  const auto* labelData = label.template data<T>();
  int offset = 0;
  for (int idx = 0; idx < len_size; ++idx) {
    Ydata[idx] = 0;
    int numPairs = 0;
    for (int i = offset; i < offset + lengths_vec[idx]; ++i) {
      for (int j = offset; j < i; ++j) {
        if (std::abs(labelData[i] - labelData[j]) <
            std::numeric_limits<T>::epsilon()) {
          continue;
        }
        ++numPairs;
        // only use sigmoid loss function at the moment
        auto sign = labelData[i] > labelData[j] ? 1 : -1;
        Ydata[idx] += logLogit(sign * (Xdata[j] - Xdata[i]));
      }
    }
    if (numPairs > 0) {
      Ydata[idx] /= numPairs;
    }
    offset += lengths_vec[idx];
  }
  return true;
}

template <class T, class Context>
bool PairWiseLossGradientOp<T, Context>::RunOnDevice() {
  auto& X = Input(XVALUE);
  auto& label = Input(LABEL);
  auto& dY = Input(DYVALUE);

  int N = X.dim() > 0 ? X.dim32(0) : 0;
  CAFFE_ENFORCE_EQ(N, X.numel());
  CAFFE_ENFORCE(
      (label.dim() == 1) || (label.dim() == 2 && label.dim32(1) == 1));
  CAFFE_ENFORCE_EQ(label.dim32(0), N);
  auto* dX = Output(DXVALUE, X.sizes(), at::dtype<T>());
  math::Set<T, CPUContext>(
      dX->numel(), 0.f, dX->template mutable_data<T>(), &context_);

  if (N == 0) {
    return true;
  }

  // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
  const int32_t* lengths_vec;
  int len_size = 1;
  if (InputSize() > LENGTHS) {
    auto& lengths = Input(LENGTHS);
    CAFFE_ENFORCE_EQ(lengths.dim(), 1);
    len_size = lengths.numel();
    lengths_vec = lengths.template data<int32_t>();
    int len_sum = 0;
    if (len_size > 0) {
      math::Sum<int, Context>(len_size, lengths_vec, &len_sum, &context_);
    }
    CAFFE_ENFORCE_EQ(len_sum, N);
  } else {
    lengths_vec = &N;
  }

  CAFFE_ENFORCE_EQ(dY.dim(), 1);
  CAFFE_ENFORCE_EQ(dY.dim32(0), len_size);

  const T* Xdata = X.template data<T>();
  const T* dYdata = dY.template data<T>();
  const T* labelData = label.template data<T>();
  T* dXdata = dX->template mutable_data<T>();
  int offset = 0;
  for (int idx = 0; idx < len_size; ++idx) {
    int numPairs = 0;
    for (int i = offset; i < offset + lengths_vec[idx]; ++i) {
      for (int j = offset; j < i; ++j) {
        if (std::abs(labelData[i] - labelData[j]) <
            std::numeric_limits<T>::epsilon()) {
          continue;
        }
        ++numPairs;
        // only use sigmoid loss function at the moment
        auto sign = labelData[i] > labelData[j] ? 1 : -1;
        auto grad =
            sign * dYdata[idx] / (1 + exp(-sign * (Xdata[j] - Xdata[i])));
        dXdata[i] -= grad;
        dXdata[j] += grad;
      }
    }
    if (numPairs > 0) {
      for (int i = offset; i < offset + lengths_vec[idx]; ++i) {
        dXdata[i] /= numPairs;
      }
    }
    offset += lengths_vec[idx];
  }
  return true;
}

namespace {
REGISTER_CPU_OPERATOR(PairWiseLoss, PairWiseLossOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
    PairWiseLossGradient,
    PairWiseLossGradientOp<float, CPUContext>);

OPERATOR_SCHEMA(PairWiseLoss)
    .NumInputs(2, 3)
    .NumOutputs(1)
    .SetDoc(R"DOC(
Operator computes the pair wise loss between all pairs within a batch
 using the logit loss function on the difference in scores between pairs
)DOC")
    .Input(
        0,
        "X",
        "Input blob from the previous layer, which is almost always "
        "the result of a softmax operation; X is a 2D array of size N x 1"
        "where N is the batch size. For more info: "
        "D. Sculley, Large Scale Learning to Rank. "
        "https://www.eecs.tufts.edu/~dsculley/papers/large-scale-rank.pdf")
    .Input(1, "label", "Blob containing the labels used to compare the input")
    .Input(
        2,
        "lengths",
        "Optional input blob that contains the lengths"
        "of multiple sessions. The summation of this blob must be equal"
        "to the size of blob X. If lengths blob is provided, the output"
        "blob has the same size as lengths blob, and the cross entropy"
        "is computed within each session.")
    .Output(0, "Y", "Output blob after the cross entropy computation");
OPERATOR_SCHEMA(PairWiseLossGradient).NumInputs(3, 4).NumOutputs(1);

class GetPairWiseLossGradient : public GradientMakerBase {
  using GradientMakerBase::GradientMakerBase;
  vector<OperatorDef> GetGradientDefs() override {
    vector<string> blob_names{I(0), I(1), GO(0)};

    // Add lengths blob if given
    if (def_.input_size() == 3) {
      blob_names.push_back(I(2));
    }
    return SingleGradientDef(
        "PairWiseLossGradient", "", blob_names, vector<string>{GI(0)});
  }
};
REGISTER_GRADIENT(PairWiseLoss, GetPairWiseLossGradient);

} // namespace
} // namespace caffe2