1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#ifndef CAFFE2_OPERATORS_REDUCTION_OPS_H_
#define CAFFE2_OPERATORS_REDUCTION_OPS_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <typename T, class Context>
class SumElementsOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit SumElementsOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsOp(const OperatorDef& operator_def, Workspace* ws, bool average)
: Operator<Context>(operator_def, ws), average_(average) {}
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
explicit SumElementsOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs, bool average)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)), average_(average) {}
#endif
~SumElementsOp() {}
bool RunOnDevice() override {
auto& X = Input(0);
auto* sum = Output(0, vector<int64_t>(), at::dtype<T>());
T* data = sum->template mutable_data<T>();
math::Sum<T, Context>(
X.numel(), X.template data<T>(), data, &context_, &scratch_);
if (average_ && X.numel() > 0) {
math::Scale<float, T, Context>(
1,
static_cast<T>(1.) / X.numel(),
sum->template data<T>(),
data,
&context_);
}
return true;
}
private:
bool average_;
Tensor scratch_{Context::GetDeviceType()};
};
template <typename T, class Context>
class SumElementsIntOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit SumElementsIntOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
~SumElementsIntOp() {}
bool RunOnDevice() override {
auto& X = Input(0);
auto* sum = Output(0, vector<int64_t>(), at::dtype<T>());
T* data = sum->template mutable_data<T>();
math::Sum<T, Context>(
X.numel(), X.template data<T>(), data, &context_, &scratch_);
return true;
}
private:
Tensor scratch_{Context::GetDeviceType()};
};
template <typename T, class Context>
class SumElementsGradientOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit SumElementsGradientOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsGradientOp(const OperatorDef& operator_def, Workspace* ws, bool average)
: Operator<Context>(operator_def, ws), average_(average) {}
#if !defined(CAFFE2_IS_XPLAT_BUILD) && !defined(C10_MOBILE)
explicit SumElementsGradientOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)),
average_(this->template GetSingleArgument<bool>("average", false)) {}
explicit SumElementsGradientOp(const c10::FunctionSchema& schema, std::vector<c10::IValue> inputs, std::vector<c10::IValue*> outputs, bool average)
: Operator<Context>(schema, std::move(inputs), std::move(outputs)), average_(average) {}
#endif
~SumElementsGradientOp() {}
bool RunOnDevice() override;
private:
bool average_;
};
template <class Context>
class SumSqrElementsOp : public Operator<Context> {
public:
USE_SIMPLE_CTOR_DTOR(SumSqrElementsOp)
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<float, double>>::call(this, Input(0));
}
template <typename T>
bool DoRunWithType() {
bool average = this->template GetSingleArgument<bool>("average", false);
auto& X = Input(0);
auto* sum = Output(0, vector<int64_t>(), at::dtype<T>());
math::SumSqr<T, Context>(
X.numel(),
X.template data<T>(),
sum->template mutable_data<T>(),
&context_,
&scratch_);
if (average && X.numel() > 0) {
math::Scale<float, T, Context>(
1,
float(1.) / X.numel(),
sum->template data<T>(),
sum->template mutable_data<T>(),
&context_);
}
return true;
}
private:
Tensor scratch_{Context::GetDeviceType()};
};
template <typename T, class Context, bool ROWWISE>
class MaxReductionOp : public Operator<Context> {
public:
USE_SIMPLE_CTOR_DTOR(MaxReductionOp)
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
auto& X = Input(0);
CAFFE_ENFORCE_EQ(X.dim(), 3);
const int batch_size = X.dim32(0);
const int M = X.dim32(1);
const int N = X.dim32(2);
auto* Y = Output(0, {batch_size, ROWWISE ? M : N}, at::dtype<T>());
if (ROWWISE) {
math::RowwiseMax<T, Context>(
batch_size * M,
N,
X.template data<T>(),
Y->template mutable_data<T>(),
&context_);
} else {
const int input_size = N * M;
for (const auto i : c10::irange(batch_size)) {
math::ColwiseMax<T, Context>(
M,
N,
X.template data<T>() + i * input_size,
Y->template mutable_data<T>() + i * N,
&context_);
}
}
return true;
}
};
template <typename T, class Context, bool ROWWISE>
class MaxReductionGradientOp : public Operator<Context> {
public:
USE_SIMPLE_CTOR_DTOR(MaxReductionGradientOp)
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
};
} // namespace caffe2
#endif
|