1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#include "caffe2/operators/relu_op.h"
#include <algorithm>
#include <functional>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
namespace {
#ifdef __HIPCC__
using half2 = __half2;
#endif // __HIPCC__
template <typename T>
__global__ void ReluCUDAKernel(const int N, const T* X, T* Y);
#define DELEGATE_RELU_CUDA_KERNEL(T, MaxFunc) \
template <> \
__global__ void ReluCUDAKernel<T>(const int N, const T* X, T* Y) { \
const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x; \
if (i < N) { \
Y[i] = MaxFunc(X[i], T(0)); \
} \
}
DELEGATE_RELU_CUDA_KERNEL(float, fmaxf)
#undef DELEGATE_RELU_CUDA_KERNEL
template <>
__global__ void ReluCUDAKernel<half>(const int N, const half* X, half* Y) {
const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (i < N) {
const half kZero = __float2half(0.0f);
#if __CUDA_ARCH__ >= 530 || TORCH_HIP_VERSION >= 300
Y[i] = __hgt(__ldg(X + i), kZero) ? __ldg(X + i) : kZero;
#else
Y[i] = (__half2float(X[i]) > 0) ? X[i] : kZero;
#endif
}
}
template <>
__global__ void ReluCUDAKernel<half2>(const int N, const half2* X, half2* Y) {
const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (i < N) {
const half2 kZero = __float2half2_rn(0.0f);
#if __CUDA_ARCH__ >= 530 || TORCH_HIP_VERSION >= 300
Y[i] = __hmul2(__hgt2(__ldg(X + i), kZero), __ldg(X + i));
#else
const float2 xx = __half22float2(X[i]);
// There are explicit cast to float here, because it may otherwise cause ambiguity on ROCm and can be triggered
// sometimes:
//
// error: conditional expression is ambiguous; 'const hip_impl::Scalar_accessor<float, Native_vec_, 0>' can be
// converted to 'float' and vice versa
Y[i] = __floats2half2_rn(xx.x > 0.0f ? static_cast<float>(xx.x) : 0.0f,
xx.y > 0.0f ? static_cast<float>(xx.y) : 0.0f);
#endif
}
}
template <typename T>
__global__ void
ReluGradientCUDAKernel(const int N, const T* dY, const T* Y, T* dX) {
const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (i < N) {
#if __CUDA_ARCH__ >= 350 || TORCH_HIP_VERSION >= 300
dX[i] = __ldg(Y + i) > T(0) ? __ldg(dY + i) : T(0);
#else
dX[i] = Y[i] > T(0) ? dY[i] : T(0);
#endif
}
}
template <>
__global__ void ReluGradientCUDAKernel<half>(
const int N,
const half* dY,
const half* Y,
half* dX) {
const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (i < N) {
const half kZero = __float2half(0.0f);
#if __CUDA_ARCH__ >= 530 || TORCH_HIP_VERSION >= 300
dX[i] = __hgt(__ldg(Y + i), kZero) ? __ldg(dY + i) : kZero;
#else
dX[i] = (__half2float(Y[i]) > 0) ? dY[i] : kZero;
#endif
}
}
template <>
__global__ void ReluGradientCUDAKernel<half2>(
const int N,
const half2* dY,
const half2* Y,
half2* dX) {
const int i = blockIdx.x * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (i < N) {
const half2 kZero = __float2half2_rn(0.0f);
#if __CUDA_ARCH__ >= 530 || TORCH_HIP_VERSION >= 300
dX[i] = __hmul2(__hgt2(__ldg(Y + i), kZero), __ldg(dY + i));
#else
const float2 dy = __half22float2(dY[i]);
const float2 yy = __half22float2(Y[i]);
// There are explicit cast to float here, because it may otherwise cause ambiguity on ROCm and can be triggered
// sometimes:
//
// error: conditional expression is ambiguous; 'const hip_impl::Scalar_accessor<float, Native_vec_, 1>' can be
// converted to 'float' and vice versa
dX[i] = __floats2half2_rn(yy.x > 0.0f ? static_cast<float>(dy.x) : 0.0f,
yy.y > 0.0f ? static_cast<float>(dy.y) : 0.0f);
#endif
}
}
} // namespace
template <>
template <typename T>
bool ReluFunctor<CUDAContext>::
operator()(const int N, const T* X, T* Y, CUDAContext* context) const {
if (N > 0) {
const int M = math::DivUp(N, CAFFE_CUDA_NUM_THREADS);
ReluCUDAKernel<T>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(N, X, Y);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
template <>
bool ReluFunctor<CUDAContext>::operator()<at::Half>(
const int N,
const at::Half* X,
at::Half* Y,
CUDAContext* context) const {
if (N == 0) {
return true;
}
if (N % 2 == 0) {
const int M = math::DivUp(N / 2, CAFFE_CUDA_NUM_THREADS);
ReluCUDAKernel<half2>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
N / 2,
reinterpret_cast<const half2*>(X),
reinterpret_cast<half2*>(Y));
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const int M = math::DivUp(N, CAFFE_CUDA_NUM_THREADS);
ReluCUDAKernel<half>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
N, reinterpret_cast<const half*>(X), reinterpret_cast<half*>(Y));
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
template <typename T>
bool ReluGradientFunctor<CUDAContext>::Forward(
const std::vector<int>& Y_dims,
const std::vector<int>& /* dY_dims */,
const T* Y,
const T* dY,
T* dX,
CUDAContext* context) const {
const int N = std::accumulate(
Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>());
if (N > 0) {
const int M = math::DivUp(N, CAFFE_CUDA_NUM_THREADS);
ReluGradientCUDAKernel<T>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
N, dY, Y, dX);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
template <>
bool ReluGradientFunctor<CUDAContext>::Forward<at::Half>(
const std::vector<int>& Y_dims,
const std::vector<int>& /* dY_dims */,
const at::Half* Y,
const at::Half* dY,
at::Half* dX,
CUDAContext* context) const {
const int N = std::accumulate(
Y_dims.cbegin(), Y_dims.cend(), 1, std::multiplies<int>());
if (N == 0) {
return true;
}
if (N % 2 == 0) {
const int M = math::DivUp(N / 2, CAFFE_CUDA_NUM_THREADS);
ReluGradientCUDAKernel<half2>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
N / 2,
reinterpret_cast<const half2*>(dY),
reinterpret_cast<const half2*>(Y),
reinterpret_cast<half2*>(dX));
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const int M = math::DivUp(N, CAFFE_CUDA_NUM_THREADS);
ReluGradientCUDAKernel<half>
<<<M, CAFFE_CUDA_NUM_THREADS, 0, context->cuda_stream()>>>(
N,
reinterpret_cast<const half*>(dY),
reinterpret_cast<const half*>(Y),
reinterpret_cast<half*>(dX));
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
REGISTER_CUDA_OPERATOR(
Relu,
UnaryElementwiseOp<
TensorTypes<float, at::Half>,
CUDAContext,
ReluFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
ReluGradient,
BinaryElementwiseOp<
TensorTypes<float, at::Half>,
CUDAContext,
ReluGradientFunctor<CUDAContext>>);
} // namespace caffe2
|