1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#include "caffe2/operators/reshape_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(Reshape, ReshapeOp<float, CPUContext>);
OPERATOR_SCHEMA(Reshape)
.NumInputs(1, 2)
.NumOutputs(2)
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
vector<TensorShape> out(2);
// Do shape inference for old_shape
out[1].set_data_type(TensorProto::INT64);
out[1].add_dims(in[0].dims_size());
ArgumentHelper helper(def);
if (!helper.HasArgument("shape")) {
// Cannot do shape inference for reshaped tensor from runtime data.
CAFFE_ENFORCE_EQ(
in.size(),
2,
"New shape must be specified by either the input blob or the "
"argument `shape`.");
out[0].set_unknown_shape(true);
return out;
}
CAFFE_ENFORCE_EQ(
in.size(),
1,
"New shape must not be specified by the input blob and the "
"argument `shape` at the same time.");
// Infer the actual new shape
auto actualNewShape = helper.GetRepeatedArgument<int64_t>("shape");
// Copy over the dimensions for those that are specified zero
// and check the eligibility of input
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < actualNewShape.size(); ++i) {
CAFFE_ENFORCE_GE(
actualNewShape[i],
-1,
"The dimensions in argument `shape` "
"must not be a negative number.");
if (actualNewShape[i] == 0) {
CAFFE_ENFORCE_LT(
i,
in[0].dims_size(),
"Argument `shape` has a dimension set to zero that exceeds "
"the original dimension size.");
actualNewShape[i] = in[0].dims(i);
}
}
// Check if the new shape is valid and fills in the missing dimension
// specified by -1.
int64_t totalSize = 1;
for (const auto d : in[0].dims()) {
totalSize *= d;
}
int64_t size = 1;
int unknownIdx = -1;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < actualNewShape.size(); ++i) {
const auto dim = actualNewShape[i];
if (dim == -1) {
CAFFE_ENFORCE(
unknownIdx == -1,
"Argument `shape` has more than one missing dimension.");
unknownIdx = i;
} else {
size *= dim;
}
}
if (unknownIdx != -1) {
CAFFE_ENFORCE(
totalSize % size == 0,
"Argument `shape` does not agree with the input data.",
" (",
totalSize,
" vs ",
size,
")");
actualNewShape[unknownIdx] = totalSize / size;
} else {
CAFFE_ENFORCE_EQ(
totalSize,
size,
"Argument `shape` does not agree with the input data.",
" (",
totalSize,
" != ",
size,
")");
}
out[0].set_data_type(in[0].data_type());
for (const auto d : actualNewShape) {
out[0].add_dims(d);
}
return out;
})
.AllowInplace({{0, 0}})
.SetDoc(R"DOC(
Reshape the input tensor similar to numpy's
[reshape](https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html).
Takes a tensor as input and an optional tensor specifying the new shape. When
the second input is absent, an extra argument shape must be specified. Outputs
the reshaped tensor as well as the original shape.
At most one dimension of the new shape can be -1. In this case, the value is
inferred from the size of the tensor and the remaining dimensions. A dimension
could also be 0, in which case the actual dimension value is going to be copied
from the input tensor.
For empty tensor, we will set the -1 dimension to be 0 (if one dimension is -1).
When the tensor is empty, dimension of 0 will remain to be 0.
E.g: data=np.empty(shape=[4, 0]), shape=[0, -1], the output tensor will be
np.emtpy(shape=[0, 0])
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/reshape_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Reshape",
["data"],
["reshaped", "old_shape"],
shape=(3,2)
)
workspace.FeedBlob("data", (np.random.randint(100, size=(6))))
print("data:", workspace.FetchBlob("data"))
workspace.RunOperatorOnce(op)
print("reshaped:", workspace.FetchBlob("reshaped"))
print("old_shape:", workspace.FetchBlob("old_shape"))
```
**Result**
```
data: [86 60 85 96 7 37]
reshaped: [[86 60]
[85 96]
[ 7 37]]
old_shape: [6]
```
</details>
)DOC")
.Arg(
"shape",
"*(type: Tuple(int))* New shape. Do not set if using "
"`new_shape` input.")
.Input(0, "data", "*(type: Tensor)* Input tensor.")
.Input(
1,
"new_shape",
"*(type: Tensor`<int>`)* [OPTIONAL] Tensor containing new shape.")
.Output(0, "reshaped", "*(type: Tensor)* Reshaped output tensor.")
.Output(
1,
"old_shape",
"*(type: Tensor`<int>`)* Tensor containing old shape of `data`.")
.InheritOnnxSchema();
class GetReshapeGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"Reshape",
"",
vector<string>{GO(0), O(1)},
vector<string>{GI(0), "_" + GI(0) + "_dims"});
}
// Argument `shape` is no longer needed in backprop.
bool CopyArguments() const override {
return false;
}
};
REGISTER_GRADIENT(Reshape, GetReshapeGradient);
} // namespace caffe2
|