1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
#include "caffe2/operators/resize_3d_op.h"
#include "caffe2/utils/math.h"
#ifdef USE_MKLDNN
#include "caffe2/ideep/operators/operator_fallback_ideep.h"
#include "caffe2/ideep/utils/ideep_operator.h"
#endif
namespace caffe2 {
void resizeNearest3DNCHW2x(
int batch_size,
int num_channels,
int temporal_scale,
int input_frames,
int input_height,
int input_width,
const float* input,
float* output) {
const int output_frames = input_frames * temporal_scale;
const int output_height = input_height * 2;
const int output_width = input_width * 2;
for (int n = 0; n < batch_size; ++n) {
for (int c = 0; c < num_channels; ++c) {
for (int f = 0; f < output_frames; ++f ) {
const int in_f = f / temporal_scale;
for (int y = 0; y < output_height; ++y) {
const int in_y = y / 2;
for (int x = 0; x < input_width; ++x) {
const float v =
input[((in_f * input_height) + in_y) * input_width + x];
const int oidx = y * output_width + x * 2;
output[oidx + 0] = v;
output[oidx + 1] = v;
}
}
output += output_height * output_width;
}
input += input_frames * input_height * input_width;
}
}
}
template <>
bool ResizeNearest3DOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() {
const auto& X = Input(0);
const auto XDims = X.sizes();
CAFFE_ENFORCE_EQ(5, XDims.size());
const int batch_size = X.dim32(0), num_channels = X.dim32(1),
input_frames = X.dim32(2), input_height = X.dim32(3),
input_width = X.dim32(4);
CAFFE_ENFORCE_EQ(InputSize(), 1);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int output_frames = input_frames * temporal_scale_;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int output_height = input_height * height_scale_;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int output_width = input_width * width_scale_;
auto* Y = Output(
0,
{batch_size, num_channels, output_frames, output_height, output_width},
at::dtype<float>());
const float* Xdata = X.data<float>();
float* Ydata = Y->template mutable_data<float>();
// Specialized implementation for fast 2x upsampling
if (width_scale_ == 2.0 && height_scale_ == 2.0) {
CAFFE_ENFORCE(temporal_scale_ == 1 || temporal_scale_ == 2,
"temporal_scale must be either 1 or 2");
resizeNearest3DNCHW2x(
batch_size, num_channels, temporal_scale_, input_frames, input_height,
input_width, Xdata, Ydata);
return true;
}
CAFFE_THROW("Not implemented when height- and width scale are not 2");
}
template <>
bool ResizeNearest3DOp<float, CPUContext>::RunOnDevice() {
switch (order_) {
case StorageOrder::NHWC:
CAFFE_THROW("Not implemented for storage order: ", order_);
case StorageOrder::NCHW:
return RunOnDeviceWithOrderNCHW();
default:
CAFFE_THROW("Unknown Storage order: ", order_);
}
}
template <>
bool ResizeNearest3DGradientOp<float, CPUContext>::RunOnDeviceWithOrderNCHW() {
const auto& dY = Input(0);
const auto& X = Input(1);
const auto inputDims = dY.sizes();
CAFFE_ENFORCE_EQ(5, inputDims.size());
const int batch_size = dY.dim32(0), num_channels = dY.dim32(1),
input_frames = dY.dim32(2), input_height = dY.dim32(3),
input_width = dY.dim32(4);
const int output_frames = X.dim32(2);
const int output_height = X.dim32(3);
const int output_width = X.dim32(4);
CAFFE_ENFORCE_EQ(InputSize(), 2);
auto* dX = Output(
0,
{batch_size, num_channels, output_frames, output_height, output_width},
at::dtype<float>());
math::Set<float, CPUContext>(
dX->numel(), 0.0f, dX->template mutable_data<float>(), &context_);
const float* dYdata = dY.data<float>();
float* dXdata = dX->template mutable_data<float>();
for (int n = 0; n < batch_size; ++n) {
for (int c = 0; c < num_channels; ++c) {
for (int f = 0; f < input_frames; ++f) {
const int out_f =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
std::min((int)(f / temporal_scale_), output_frames - 1);
for (int y = 0; y < input_height; ++y) {
const int out_y =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
std::min((int)(y / height_scale_), (output_height - 1));
for (int x = 0; x < input_width; ++x) {
const int out_x =
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
std::min((int)(x / width_scale_), (output_width - 1));
dXdata[(out_f * output_height + out_y) * output_width + out_x] +=
dYdata[(f * input_height + y) * input_width + x];
}
}
}
dYdata += input_frames * input_height * input_width;
dXdata += output_frames * output_height * output_width;
}
}
return true;
}
template <>
bool ResizeNearest3DGradientOp<float, CPUContext>::RunOnDevice() {
switch (order_) {
case StorageOrder::NHWC:
CAFFE_THROW("Not implemented for storage order: ", order_);
case StorageOrder::NCHW:
return RunOnDeviceWithOrderNCHW();
default:
CAFFE_THROW("Unknown Storage order: ", order_);
}
}
REGISTER_CPU_OPERATOR(ResizeNearest3D, ResizeNearest3DOp<float, CPUContext>);
REGISTER_CPU_GRADIENT_OPERATOR(
ResizeNearest3DGradient,
ResizeNearest3DGradientOp<float, CPUContext>);
#ifdef USE_MKLDNN
REGISTER_IDEEP_OPERATOR(
ResizeNearest3D,
IDEEPFallbackOp<ResizeNearest3DOp<float, CPUContext>>);
#endif
// Input: X, output: Y
OPERATOR_SCHEMA(ResizeNearest3D)
.NumInputs(1)
.NumOutputs(1)
.Arg("temporal_scale", "Scale along temporal dimension")
.Arg("width_scale", "Scale along width dimension")
.Arg("height_scale", "Scale along height dimension")
.SetDoc(R"DOC(
Resizes the spatial dimensions of the input tensor using nearest neighbor
interpolation. The `width_scale` and `height_scale` arguments
control the size of the output, which is given by:
output_width = floor(input_width * width_scale)
output_height = floor(output_height * height_scale)
Assumptions:
- Only resize height and width
- Both width_scale and height_scale scale are 2
)DOC")
.Input(0, "X", "Input tensor")
.Output(0, "Y", "Output tensor");
// Input: dY, output: dX
GRADIENT_OPERATOR_SCHEMA(ResizeNearest3DGradient)
.NumInputs(2)
.NumOutputs(1)
.Arg("temporal_scale", "Scale along temporal dimension")
.Arg("width_scale", "Scale along width dimension")
.Arg("height_scale", "Scale along height dimension");
class GetResizeNearest3DGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"ResizeNearest3DGradient",
"",
vector<string>{GO(0), I(0)},
vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(ResizeNearest3D, GetResizeNearest3DGradient);
} // namespace caffe2
using ResizeNearest3DOpFloatCPU =
caffe2::ResizeNearest3DOp<float, caffe2::CPUContext>;
// clang-format off
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
ResizeNearest3D,
"_caffe2::ResizeNearest3D("
"Tensor X, "
"str order, "
"float temporal_scale, "
"float width_scale, "
"float height_scale"
") -> (Tensor Y)",
ResizeNearest3DOpFloatCPU);
// clang-format on
|