File: rmac_regions_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (229 lines) | stat: -rw-r--r-- 6,235 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include <cub/block/block_reduce.cuh>
#include "caffe2/utils/cub_namespace.cuh"

#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/rmac_regions_op.h"

#if defined(USE_ROCM)
#include <cfloat>
#endif

#if defined(USE_ROCM)
namespace rocprim {
#else
#if USE_GLOBAL_CUB_WRAPPED_NAMESPACE()
namespace at_cuda_detail {
#endif
namespace cub {
#endif

template <typename KeyT, typename ValueT>
inline __host__ __device__ bool operator<(
    const cub::KeyValuePair<KeyT, ValueT>& kv1,
    const cub::KeyValuePair<KeyT, ValueT>& kv2) {
  return (kv1.value < kv2.value) ||
      (kv1.value == kv2.value && kv2.key < kv1.key);
}

} // namespace cub
#if USE_GLOBAL_CUB_WRAPPED_NAMESPACE()
}  // namespace at_cuda_detail
#endif

namespace caffe2 {

namespace {

__global__ void NumRMACRegionsKernel(
    const int W,
    const int H,
    const int min_step,
    const int max_step,
    const float overlap,
    const int scales,
    int* num_rois_data) {
  // steps(idx) regions for long dimension
  typedef cub::KeyValuePair<int, float> KeyValuePair; // <step, value>
  KeyValuePair kv, min_kv;
  min_kv.value = FLT_MAX;

  // Local reduction
  int minW = min(H, W);
  int diff = max(H, W) - minW;
  CUDA_1D_KERNEL_LOOP(index, max_step - min_step + 1) {
    kv.key = min_step + index;
    float b = diff / (1.0 * kv.key);
    kv.value = fabsf((minW * minW - minW * b) / (minW * minW) - overlap);

    if (kv < min_kv) {
      min_kv = kv;
    }
  }

  // Block-wise arg-min reduction to find step
  int step;
  {
    typedef cub::BlockReduce<KeyValuePair, CAFFE_CUDA_NUM_THREADS> BlockReduce;
    __shared__ typename BlockReduce::TempStorage temp_storage;
    min_kv = BlockReduce(temp_storage).Reduce(min_kv, cub::Min());

    __shared__ int step_shared;
    if (threadIdx.x == 0) {
      step_shared = min_kv.key;
    }
    __syncthreads();
    step = step_shared;
  }

  // Region overplus per dimension
  int Wd = (W > H) ? step : 0;
  int Hd = (H > W) ? step : 0;

  // Local reduction to compute the total number of rois at all scales
  int num_rois = 0;
  CUDA_1D_KERNEL_LOOP(index, scales) {
    int l = index + 1;
    int region_size = 2 * minW / (l + 1);
    num_rois += (region_size > 0) ? ((l + Wd) * (l + Hd)) : 0;
  }

  // Block-wise sum reduction to compute num_rois at all scales
  {
    typedef cub::BlockReduce<int, CAFFE_CUDA_NUM_THREADS> BlockReduce;
    __shared__ typename BlockReduce::TempStorage temp_storage;
    num_rois = BlockReduce(temp_storage).Sum(num_rois);
  }

  if (threadIdx.x == 0) {
    num_rois_data[0] = num_rois;
    num_rois_data[1] = Wd;
    num_rois_data[2] = Hd;
  }
}

__global__ void RMACRegionsKernel(
    const int W,
    const int H,
    const int N,
    const int* num_rois_data,
    float* output) {
  int num_rois = num_rois_data[0];
  int Wd = num_rois_data[1];
  int Hd = num_rois_data[2];

  // Block-wide temp shared storage for intermediate ROI results to avoid
  // uncoalesced writes to global mem
  __shared__ float output_shared[CAFFE_CUDA_NUM_THREADS * 5];

  CUDA_1D_KERNEL_LOOP(index, N) {
    int batch_id = index / num_rois;
    int roi_id = index % num_rois;

    int roi[5];
    roi[0] = batch_id;

    // Find the scale corresponding to this index and the roi_id relative
    // to the scale.
    int l = 0;
    int num_rois_at_scale = 0;
    do {
      roi_id -= num_rois_at_scale;
      l++;
      num_rois_at_scale = (l + Wd) * (l + Hd);
    } while (roi_id - num_rois_at_scale >= 0);

    int region_size = 2 * min(H, W) / (l + 1);
    float bw =
        (l + Wd - 1 > 0) ? ((W - region_size) / (1.0 * (l + Wd - 1))) : 0;
    float bh =
        (l + Hd - 1 > 0) ? ((H - region_size) / (1.0 * (l + Hd - 1))) : 0;

    int i = roi_id / (l + Hd);
    int j = roi_id % (l + Hd);

    roi[1] = bw * i;
    roi[2] = bh * j;
    // Careful with the borders
    if (roi[1] + region_size > W) {
      roi[1] -= (roi[1] + region_size - W);
    }
    if (roi[2] + region_size > H) {
      roi[2] -= (roi[2] + region_size - H);
    }
    roi[3] = roi[1] + region_size - 1;
    roi[4] = roi[2] + region_size - 1;

    // Writing directly to output (global memory) will result in uncoalesced
    // writes. Write output to shared mem first and then write ROI results to
    // global output in a coalesced manner.
    __syncthreads(); // Since output_shared is reused across loop iterations
    for (int i = 0; i < 5; ++i) {
      output_shared[threadIdx.x * 5 + i] = roi[i];
    }
    __syncthreads();
    int offset = index - threadIdx.x;
    float* output_offset = output + offset * 5;
    int num_threads = min(blockDim.x, N - offset); // Active threads in block
    for (int i = 0; i < 5; ++i) {
      output_offset[num_threads * i + threadIdx.x] =
          output_shared[num_threads * i + threadIdx.x];
    }
  }
}

} // namespace

template <>
bool RMACRegionsOp<CUDAContext>::RunOnDevice() {
  const auto& X = Input(0); // Input tensor
   // RoIs

  if (X.numel() == 0) {
    return true;
  }

  int batch_size = X.dim32(0);
  int H = X.dim32(2);
  int W = X.dim32(3);

  // Compute number of regions
  int min_step = 1;
  int max_step = 6;
  ReinitializeTensor(&num_rois_, {3}, at::dtype<int>().device(CUDA)); // num_rois, Wd, Hd
  NumRMACRegionsKernel<<<
      1,
      CAFFE_CUDA_NUM_THREADS,
      0,
      context_.cuda_stream()>>>(
      W,
      H,
      min_step,
      max_step,
      overlap_,
      scales_,
      num_rois_.mutable_data<int>());
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  // Bit awkward, but the size of the output tensor depends on the output of
  // NumRMACRegionsKernel (number of RoIs), so need to copy that to CPU
  // to Resize() output appropriately.
  int num_rois = 0;
  context_.CopyBytesToCPU(sizeof(int), num_rois_.data<int>(), &num_rois);
  int N = batch_size * num_rois;
  auto* output = Output(0, {N, 5}, at::dtype<float>()); // [batch_id x1 y1 x2 y2]

  // Compute region coordinates
  RMACRegionsKernel<<<
      CAFFE_GET_BLOCKS(N),
      CAFFE_CUDA_NUM_THREADS,
      0,
      context_.cuda_stream()>>>(
      W, H, N, num_rois_.data<int>(), output->template mutable_data<float>());
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

REGISTER_CUDA_OPERATOR(RMACRegions, RMACRegionsOp<CUDAContext>);

} // namespace caffe2