1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include "caffe2/operators/rms_norm_op.h"
#include <array>
#include <cmath>
#include <string>
#include <tuple>
#include <vector>
#include "ATen/Parallel.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math/utils.h"
namespace caffe2 {
template <>
template <typename T>
bool RMSNormOp<CPUContext>::DoRunWithType() {
const auto& X = Input(0);
const auto& gamma = Input(1);
const auto& beta = Input(2);
auto* Y = Output(0, X.sizes(), at::dtype<T>());
CAFFE_ENFORCE_GE(X.dim(), 2, "RMSNorm requires input dim >= 2.");
const int canonical_axis = X.canonical_axis_index(axis_);
const std::vector<int64_t> rms_dims(
X.sizes().cbegin(), X.sizes().cbegin() + canonical_axis);
auto* rrms = Output(1, rms_dims, at::dtype<T>());
const int64_t M = X.size_to_dim(canonical_axis);
const int64_t N = X.size_from_dim(canonical_axis);
CAFFE_ENFORCE_EQ(gamma.numel(), N);
CAFFE_ENFORCE_EQ(beta.numel(), N);
const T* X_data = X.template data<T>();
const T* gamma_data = gamma.template data<T>();
const T* beta_data = beta.template data<T>();
T* Y_data = Y->template data<T>();
T* rrms_data = rrms->template data<T>();
ConstEigenArrayMap<T> X_arr(X_data, N, M);
ConstEigenVectorArrayMap<T> gamma_arr(gamma_data, N);
ConstEigenVectorArrayMap<T> beta_arr(beta_data, N);
EigenArrayMap<T> Y_arr(Y_data, N, M);
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
for (int64_t i = start; i < end; ++i) {
const T rrms_val =
T(1) / std::sqrt(X_arr.col(i).square().mean() + static_cast<T>(eps_));
Y_arr.col(i) = rrms_val * X_arr.col(i) * gamma_arr + beta_arr;
rrms_data[i] = rrms_val;
}
});
return true;
}
template <>
template <typename T>
void RMSNormGradientOp<CPUContext>::RMSNormBackward(
int64_t M,
int64_t N,
const T* dY,
const T* X,
const T* gamma,
const T* rrms,
T* dX) {
ConstEigenArrayMap<T> dY_arr(dY, N, M);
ConstEigenArrayMap<T> X_arr(X, N, M);
ConstEigenVectorArrayMap<T> gamma_arr(gamma, N);
EigenArrayMap<T> dX_arr(dX, N, M);
const T scale = T(1) / static_cast<T>(N);
at::parallel_for(0, M, 1, [&](int64_t start, int64_t end) {
for (int64_t i = start; i < end; ++i) {
const T ds = (dY_arr.col(i) * X_arr.col(i) * gamma_arr).sum();
const T c1 = rrms[i];
const T c2 = -scale * ds * math::utils::Cube<T>(rrms[i]);
dX_arr.col(i) = c1 * dY_arr.col(i) * gamma_arr + c2 * X_arr.col(i);
}
});
}
template <>
template <typename T>
void RMSNormGradientOp<CPUContext>::GammaBetaBackward(
int64_t M,
int64_t N,
const T* dY,
const T* X,
const T* rrms,
T* dgamma,
T* dbeta) {
math::Set<T, CPUContext>(N, T(0), dgamma, &context_);
math::Set<T, CPUContext>(N, T(0), dbeta, &context_);
ConstEigenArrayMap<T> dY_arr(dY, N, M);
ConstEigenArrayMap<T> X_arr(X, N, M);
EigenVectorArrayMap<T> dgamma_arr(dgamma, N);
EigenVectorArrayMap<T> dbeta_arr(dbeta, N);
for (int64_t i = 0; i < M; ++i) {
dgamma_arr += dY_arr.col(i) * X_arr.col(i) * rrms[i];
dbeta_arr += dY_arr.col(i);
}
}
REGISTER_CPU_OPERATOR(RMSNorm, RMSNormOp<CPUContext>);
REGISTER_CPU_OPERATOR(RMSNormGradient, RMSNormGradientOp<CPUContext>);
OPERATOR_SCHEMA(RMSNorm)
.NumInputs(3)
.NumOutputs(2)
.TensorInferenceFunction([](const OperatorDef& def,
const vector<TensorShape>& in) {
std::vector<TensorShape> out(2);
const auto input_dims_long = GetDimsVector(in[0]);
const std::vector<int> input_dims(
input_dims_long.cbegin(), input_dims_long.cend());
out[0] = CreateTensorShape(input_dims, in[0].data_type());
ArgumentHelper helper(def);
const int axis = helper.GetSingleArgument<int32_t>("axis", 1);
const int canonical_axis =
canonical_axis_index_(axis, in[0].dims().size());
const std::vector<int> rms_dims(
input_dims.cbegin(), input_dims.cbegin() + canonical_axis);
out[1] = CreateTensorShape(rms_dims, in[0].data_type());
return out;
})
.Arg(
"axis",
"(int) default to 1; Describes axis of the inputs. Defaults to one "
"because the 0th axis most likely describes the batch size")
.Arg(
"epsilon",
"(float) default to 0.001. Small value to be added to the stdev when"
" dividing out by that value. This prevents division by zero.")
.Input(
0,
"input",
"Input tensor which layer normalization will be applied to")
.Input(
1,
"gamma",
"scale tensor for elementwise_affine, the shape should be the same as "
"the dimensions of X begin from axis")
.Input(
2,
"beta",
"bias tensor for elementwise_affine, the shape should be the same as "
"the dimensions of X begin from axis")
.Output(0, "output", "Normalized values")
.Output(
1,
"rrms",
"Reciprocal of root mean square for each feature vector");
OPERATOR_SCHEMA(RMSNormGradient).NumInputs(4).NumOutputs(3);
namespace {
class GetRMSNormGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"RMSNormGradient",
"",
std::vector<std::string>{GO(0), I(0), I(1), O(1)},
std::vector<std::string>{GI(0), GI(1), GI(2)});
}
};
} // namespace
REGISTER_GRADIENT(RMSNorm, GetRMSNormGradient);
} // namespace caffe2
|